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Abstract

Assessing Generalization of
Feedforward Neural
Networks

We address the question of how many training samples are required to
ensure that the performance of a neural network of given complexity on
its training data matches that obtained when fresh data is applied to
the network. This desirable property may be termed ‘reliable general-
ization.” Well-known results of Vapnik give conditions on the number
of training samples sufficient for reliable generalization, but these are
higher by orders of magnitude than practice indicates; other results in
the mathematical literature involve unknown constants and are useless
for our purposes.

We seek to narrow the gap between theory and practice by trans-
forming the problem into one of determining the distribution of the
supremum of a Gaussian random field in the space of weight vectors.
This is addressed first by application of a tool recently proposed by
D. Aldous called the Poisson clumping heuristic, and then by related
probabilistic techniques. The idea underlying all the results is that
mismatches between training set error and true error occur not for an
isolated network but for a group or ‘clump’ of similar networks. In a
few ideal situations—perceptrons learning halfspaces, machines learning
axis-parallel rectangles, and networks with smoothly varying outputs—
the clump size can be derived and asymptotically precise sample size
estimates can be found via the heuristic.

In more practical situations, when formal knowledge of the data dis-
tribution is unavailable, the size of this group of equivalent networks
can be related to the original neural network problem via a function
of a correlation coefficient. Networks having prediction error correlated
with that of a given network are said to be within the ‘correlation vol-
ume’ of the latter. Means of computing the correlation volume based
on estimating such correlation coefficients using the training data are
proposed and discussed. Two simulation studies are performed. In the
cases we have examined, informative estimates of the sample size needed
for reliable generalization are produced by the new method.
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It is possible, possible, possible. It must
be possible. It must be that in time
The real will from its crude compoundings come,

Seeming, at first, a beast disgorged, unlike,
Warmed by a desperate milk. To find the real,
To be stripped of every fiction except one,

The fiction of an absolute.

—Wallace Stevens
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Introduction

IN THE PAPER by Le Cun et al. [22] we read of a nonlinear classifier,
a neural network, used to recognize handwritten decimal digits. The
inputs to the classifier are gray-scale images of 16 x 16 pixels, and the
output is one of 10 codes representing the digits. The exact construction
of the classifier is not of interest right now; what does matter is that
its functional form is fixed at the outset of the process so that selection
of a classifier means selecting values for d = 9760 real numbers, called
the weight vector. No probabilistic model is assumed known for the
digits. Instead, n = 7291 input/output pairs are used to find a weight
vector approximately minimizing the squared error between the desired
outputs and the classifier outputs on the known data.

In summary: based on 7291 samples, the 9760 parameters of a non-
linear model are to be estimated. It is not too surprising that a function
can be selected from this huge family that agrees well with the train-
ing data. The surprise is rather that the mean squared error computed
on a separate test set of handwritten characters agrees reasonably well
with the error on the training set (.0180 and .0025 respectively for MSE
normalized to lie between 0 and 1). The classifier has generalized from
the training data.

This state of affairs is rather common for neural networks across a
wide variety of application areas. In table 1.1 are several recent appli-
cations of neural networks, listed with the corresponding number of free
parameters in the model and the number of input/output pairs used to
select the model. One has an intuitive idea that for a given problem,
good performance on the training set should imply good performance on
the test set as long as the ratio n/d is large enough; general experience
would indicate that this ratio should surely be greater than unity, but
just how large is unclear. From the table, we see that the number of data
points per parameter varies over more than three orders of magnitude.

One reason such a large range is seen in this table is that statistics has
had little advice for practitioners about this problem. The most useful
line of argument was initiated by Vapnik [53] which computes upper
bounds on a satisfactory n/d: if the number of data per parameter is
this high, accuracy of a given degree between test and training error
is guaranteed with high probability; we say the architecture reliably
generalizes. While Vapnik’s result confirms intuition in the broad sense,
the upper bounds have proven to be higher by orders of magnitude than
practice indicates. We seek to narrow the chasm between statistical
theory and neural network practice by finding reasonable estimates of
the sample size at which the architecture reliably generalizes.
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Table 1.1: Some recent neural network applications.

n d n/d Application Source
7291 2578 2.83 Digit Recognition LeCun et al. [23]
4104 3040 1.35 Vowel Classification Atlas et al. [21]
3190 2980 1.07 Gene Identification ~ Noordewier et al. [42]
2025* 2100 0.96 Medical Imaging Nekovi [41]
7291 9760 0.75 Digit Recognition LeCun et al. [22]
105 156  0.67  Commodity Trading Collard [13]
150 360 0.42 Robot Control Gullapalli [28]
200 1540 0.13 Image Classification Delopoulos [15]
1200 36600  1/30 Vehicle Control Pomerleau [45]

3171 376000 1/120 Protein Structure Fredholm et al. [20]
20 8200 1/410 Signature Checking Mighell et al. [40]
160 165000 1/1000 Face Recognition Cottrell, Metcalfe [14]

Shown are the number of samples used to train the network (n), the number of
distinct weights (d), and the number of samples per weight. The starred entry is a
conservative estimate of an equivalent number of independent samples; the training
data in this application was highly correlated.

We formalize the problem in these terms:

e The inputs z € RP and outputs y € R have joint probability dis-
tribution P which is unknown to the observer who only has the
training set 7 := {(z;,y;)}", of pairs drawn i.i.d. from P.

e Models are neural networks 7(z;w) where x is the input and w €
W C R¢ parameterizes the network. The class of allowable nets is

N ={n(5w)}bwew.

e The performance of a model may be measured by any loss function.
We will consider

vr(w)i= Y (nfaiw) - )’ (1)
E(w) = E(n(z;w) —y)" (1.2)

the former is the empirical error and is accessible while the latter
depends on the unknown P and is not. In the classification setting,
inputs and outputs are binary, £(w) is error probability, and vr(w)
is error frequency.

e Two models are of special importance, they are

w” = argmin vy (w) (1.3)
wew

w® := argmin &£(w) (1.4)
wew

where either may not be unique. The goal of the training algorithm
is to find w*.
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Since P is unknown, £(w*) cannot be found directly. One measure is

just v (w*), but this is a biased estimate of £(w*) because of the way
*

w* is selected. We treat this problem by finding an n such that
sup |vr(w) — E(w)| < e with probability 7 (1.5)
weW

for 7 near one. The seeming overkill of including all weights in the
supremum makes sense when one realizes that to limit the group of
weights to be considered, one must take into account the algorithm
used to find w*. In particular its global properties seem needed because
the issue of what the error surface looks like around the limit points of
the algorithm must be dealt with. However, little is known about the
global properties of any of the error-minimization algorithms currently
in use—several variations of gradient descent, and conjugate gradient
and Newton-Raphson methods.
Let us examine three implications of (1.5).

e Even for a training algorithm that does not minimize v,
lvr(w*) — E(w*)| <e w.p.T (1.6a)

so that the ultimate performance of the selected model can be veri-
fied simply by its behavior on the training set. It is hard to overstate
the importance of (1.6a) in the typical situation where the selected
neural network has no interpretation based on a qualitative under-
standing of the data, i.e. the neural network is used as a black box.
In the absence of a rationale for why the network models the data,
statistical assurance that it does so becomes very important.

e Provided vr(w) < vr(w®),
E(w) — E(w’) < 2 w.p.T
and in particular,
0 <E(w*) —Ew’) <2 w.p.T. (1.6b)

This follows from

If this much confidence in the training algorithm is available, then

*

w* is close to w? in true squared error.
e Similarly, if v7(w) < v (w°®) then
E(@®) —vr(w)] < e wp.,
and in particular

1E(wW®) — vr(w*)| < e w.p.T. (1.6¢)
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This is because

This gives information about how effective the family of nets is:
if vy (w*) is much larger than the tolerance €, no network in the
architecture is performing well.

We contrast determining the generalization ability of an architecture
by ensuring (1.5) with two other approaches. The simpler method uses
a fraction, typically half, of the available input/output pairs to form

say V%—l)(’w) and select w*. The remainder of the data is used to find

an independent replica V»(I?) (w) of V;—l)(w) by which estimates of the
type (1.6a) are obtained. The powerful argument against this approach
is its use of only half the available data to select w™*.

The cross-validation method (see [19]) avoids wasting data by holding
out just one piece of data and training the network on the remainder.
This leave-one-out procedure is repeated n times while noting the pre-
diction error on the excluded point. The cross-validation estimate of
generalization error is the average of the excluded-point errors. The
advantages of this method lie in its simplicity and frugality, while draw-
backs are that it is computationally intensive and difficult to analyze, so
very little is known about the quality of the error estimates. More telling
to us, such single-point analyses can never give information of a global
nature such as (1.6b) and (1.6¢c) above. Using only cross-validation
forces one into a point-by-point examination of the weight space when
far more informative results are available.

We shall see that it may be preferable to establish conditions under
which

up () = EQ)

< e with probability 7 near 1 (1.7)
wew U(’LU)

where o?(w) := Var(vr(w)) = Var((y — n(z;w))?). Normalization is
useful because the weight largest in variance generally dominates the
exceedance probability, and typically such networks are poor models. In
binary classification for example, 0% (w) = £(w)(1 — €(w)) is maximized
at E(w) =1/2.

Continuing in this classification context, we explore the implications
of (1.7). These are regulated by o(w*) and o(w?®). If we make the
reasonable assumption that £(w*) < 1/2, then by minimality of w°,
o(w*) > o(w®). (Alternatively, if the architecture is closed under com-
plementation then minimality of w® implies not only &(w*) > &(w°),
but also £(w*) < 1 — E(w), so again o(w*) > o(w’).) Knowing this
allows the manipulations in §1.2 to be repeated, yielding

v (w*) = E(w*)| < ey/E(w) (1 — E(w*)) (1.8a)
0< Ew*) — EW°) < 2e\/E(w*)(1 — E(w*)) (1.8b)
Ew) — vr(w?)] < ey/E(@)(1 = E(w")) (1.50)
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which hold simultaneously with probability 7. To understand the essence
of the new assertions, note that if v (w*) = 0, then the first condition
says that £(w*) < €2/(1 + €2) ~ €2. Now this allows us to conclude
the second two errors are also of order €2 since /&(w*)(1 — £(w*)) <
€/(1+ €2). All three conclusions are tightened considerably.

In the general case, the following hold with probability 7:

pr(w") — )] < eolw’) (1.99)

0< E(w*) — Ew’) < e(o(w* +a( %) (1.9b)
|E(W?) — vr(w*)| < €(o(w*) Vo) . (1.9¢)

We would expect o(w?) < o(w*

expressions to depend only on o
the data as

which can be used to simplify the above
w*). Then o(w*) can be estimated from

,—\\_/ A/_\

=3 (s —nlzi;w))? — vr(w))®

=1

In any case, we would expect o(w*) to be significantly smaller than the
maximum variance, so that the assertions above are again stronger than
the corresponding unnormalized ones.

Before considering the problem in greater detail, let us mention that
tightly related work is going on under two other names. In probability
and statistics, the random entity v7(w) — €(w) is known as an empirical
process, and the supremum of this process is a generalized Kolmogorov-
Smirnov statistic. We will return to this viewpoint later on. See the
development of Pollard [43] or the survey of Gaenssler and Stute [26].

In theoretical computer science, the field of computational learning
theory is concerned, as above, with selecting a model (‘learning a con-
cept’) from a sequence of observed data or queries. Within this field, the
idea of PAC (probably approximately correct) learning is very closely
related to our formulation of the neural network problem. Computer
scientists are also interested in algorithms for finding a near-optimal
model in polynomial time, an issue we do not address. For an introduc-
tion see Kearns and Vazirani [33], Anthony and Biggs [9], or the original
paper of Valiant [52].

After reviewing prior work on the problem of generalization in neural
networks in chapter 2, we introduce a new tool from probability theory
called the Poisson clumping heuristic in chapter 3. The idea is that
mismatches between empirical error and true error occur not for an
isolated network but for a ‘clump’ of similar networks, and computations
of exceedance probability come down to obtaining the expected size of
this clump. In chapter 4 we demonstrate the validity and appeal of the
Poisson clumping technique by examining several examples of networks
for which the mean clump size can be computed analytically.

An important feature of the new sample size estimates is that they
depend on simple properties of the architecture and the data: this has
the advantage of being tailored to a given problem but the potential
disadvantage of our having to compute them. Since in general analytic
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information about the network is unavailable, in chapter 5 we develop
ways to estimate the mean clump size using the training data. Some
simulation studies in chapter 6 show the usefulness of the new sample
size estimates.

The high points here are chapters 4, 5, and 6. The contributions of
this research are:

e Introduction of the Poisson clumping view, which provides a means
of visualizing the error process which is also amenable to analysis
and empirical techniques.

e In §4.2 and §4.3 we give precise estimates of the sample size needed
for reliable generalization for the problems of learning orthants and
axis-oriented rectangles. In §4.4 we give similar estimates for the
problem of learning for linear threshold units.

e In §4.5 we consider neural nets having twice differentiable activation
functions, so that the error v (w)—E&(w) is smooth, yielding a local
approximation which allows determination of the mean clump size.
Again estimates of the sample size needed for reliable generalization
are given.

e In §6.3, after having developed some more tools, we find estimates
of the clump size under the relative distance criterion (1.7), which
allows tight sample size estimates to be obtained for the problem
of learning rectangles.

e Finally in chapters 5 and 6 a method for empirically finding the
correlation volume, which is an estimate of the size of a group of
equivalent networks, is outlined. In chapter 6 the method is tested
for some sample architectures.

With some exceptions, including the real numbers R, sets are denoted
by script letters. The x symbol is Cartesian product. The indicator of
aset Ais 14. We use & and || for logical and and or, while A and V

denote the minimum and maximum. Equals by definition is := and 2
stands for equality in distribution. Generally |-| is absolute value and
|-l is the supremum of the given function over W.

Context differentiates vectors from scalars except for 0 and oo, which
are vectors with all components equal to 0 and oo respectively. Vectors
are columns, and a raised T is matrix transpose. A real function f has
gradient V f which is a column vector, and Hessian matrix VV f. The
determinant is denoted by |-|. The volume of the unit sphere in RY is
kq = 2y /d0(d/2).

A standard normal random variable has density ¢(x) and cdf ®(z) =
1 — ®(z). In appendix A, §A.2 shows that the asymptotic expansion
®(r) ~ 27 1¢(z) is accurate as an approximation even as low as = > 1.
The same is true for the Stirling formula, §A.1.

One focus of this work is developing approximations for exceedance
probabilities based on a heuristic method. The approximations we de-
velop will be encapsulated and highlighted with the label ‘Result’ as
distinct from a mathematically proper ‘Theorem’.
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Prior Work

CONTEMPORARY INTEREST in the above formulation of the learn-
ing problem is largely due to the work of Vapnik and Chervonenkis [54]
and Vapnik [53], which was first brought to the attention of the neural
network community by Baum and Haussler [10]. We briefly outline the
result.

2.1 Definition The family of classifiers N is said to shatter a point set
S C RPif

VS CS)(FneN)VzeS)nz)=1 < z€8 |
ie. N is rich enough to dichotomize S in any desired way.

2.2 Definition The Vapnik-Chervonenkis (VC) dimension of N is the
greatest integer v such that

(3S C RP)(card(S) = v & N shatters S)

If N shatters sets of arbitrary size, then say v = co.

If v < oo, N shatters no set having more than v points. The results of
Vapnik and Chervonenkis hinge on the surprising, purely combinatorial,

2.3 Lemma (Sauer) For a given family of classifiers N, either v = 0o
or, for all n > v, the number of dichotomies of any point set S of
cardinality n that are generated by N is no more than ZZ:O (?) <
1.5n7/v! < (en/v)".

Proof. See Sauer [46] for the first expression and Vapnik [53] for the
bound. 0

Sauer [46] points out that the class ‘all point sets in RP of cardinality v’
has VC dimension v and achieves the first bound of the lemma. Table 2.1
lists some classifier architectures and their VC dimensions. We note that
the VC dimension of an architecture having d independently adjusted
real parameters is generally about d. We may now state

2.4 Theorem [53, ch. 6, thm. A.2] Let the VC dimension of the binary
classifiers N' be v < oo. Then

Pl () = £l Iy > 9 <6 (%) exp(oncfa) . (@1)
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Table 2.1: Sample Vapnik-Chervonenkis dimensions

Class Representative VC Dimension
Orthants xP_ (—o0, wy] P
Rectangles XV [wos, wis) 2p
Halfspaces (I) {z : wlz >0} D
Halfspaces (II) {z : wle > we} p+1
Linear Space  {z : 22:1 wror(z) >0} d

In each case the classifier architecture consists of versions of the shown prototype, a
subset of RP, as parameters w are varied. Most of these results are proved by
Wenocur and Dudley [56], although some of them are elementary.

Proof. We sketch the idea of Vapnik’s proof. Standard symmetrization
inequalities give

P([lrr(w) = EW)]lly > €) < 2P([[[r(w) —vr (w)llly > €/2)

where vy (w) is the empirical error computed on a “phantom” training
set 7’ which is independent of 7 but has the same distribution. While
the bracketed quantity on the LHS depends continuously on w, the
corresponding one on the RHS depends only on where the 2n random
pairs in 7 and 7 fall. By Sauer’s lemma, the nets in N can act on
these points in at most ((2n)e/v)” ways, so there are effectively only this
many classifiers in A/. The probability that a single such net exhibits
a discrepancy is a large deviation captured by the exponential factor.
The overall probability is then handled by a union bound, where the
polynomial bounds the number of distinct nets and the exponential
bounds the probability of a discrepancy.

This is the essence of the argument, but the difficulty to be overcome
is that precisely which networks are in the group of ‘differently-acting’
classifiers depends on the (random) training set. Some ingenious condi-
tioning and randomization techniques must be used in the proof. O

The bound (2.1) is a polynomial in n of fixed degree v multiplying an
exponential which decays in n, so the probability may be made arbi-
trarily small by an appropriately large sample size n. It is worthwhile
to appreciate some unusual features of this bound:

e There are no unknown constant prefactors.

e The bound does not depend on any characteristics of the unknown
probability distribution P. We term this uniformity across distri-
butions.

e The bound likewise is independent of the function y which is to be
estimated. This is uniformity across target functions.

e The bound holds for all networks. As discussed in §1.2, this pro-
vides information about £(w*) as well as the efficacy of the archi-
tecture and how close the selected net is to the optimal one. This
is uniformity across networks.
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To understand the predictions offered by (2.1), note that the expo-
nential form of the bound implies that after it drops below unity, it
heads to zero very quickly. It is therefore most useful to find the criti-
cal sample size at which the bound drops below unity. The calculation
in §C.1 shows this critical size is very close to

9.2v 8
ne =4 log - (2.2)
For purposes of illustration take ¢ = .1 and v = 50, for which n, =
202 000. A neural network with v = 50 has about 50 free parameters,
so the recommendation is for 4000 training samples per parameter, dis-
agreeing by at least three orders of magnitude with the experience of
even conservative practitioners (compare table 1.1).

In the introduction we proposed to pin down the performance of a
data model which is selected on the basis of a training set by finding a
sample size for which with probability nearly one,

7 (w) = EW)l Iy <€ - (2.3)

The resulting estimate, while remarkable for its explicitness and univer-
sality, is far too large. Our principal concern will be to find ways of
making a tighter estimate of (2.3).

One way to improve (2.1) is to note that an ingredient of the Vapnik
bound is the pointwise Chernoff bound

P(vr(w) — E(w) > €) < exp(—ne?/(2E(w)(1 — E(w))))

< exp(—2n62) (24)

which has been weakened via 0 < £(w) < 1. However, since we antic-
ipate £(w) ~ 0 the second bound seems unwise: for the classifiers of
interest it is a gross error. This is a reflection of the simple fact men-
tioned in section 1.3 that typically the maximum-variance point (here
E(w) = 1/2) dominates exceedance probabilities such as (2.3). (See e.g.
[39, 50] and [36, ch. 3].) Resolution may be added to (2.1) by examining
instead

P(|[lvr(w) = Ew)| /VE(w)(L = E(w)) [l >€) (2.5)

Vapnik approximates this criterion and proves

2.5 Theorem [53, ch. 6, thm. A.3] Let the VC dimension of the binary
classifiers N' be v. Then

P(|[(E(w) = vr(w)) /VEwW) |, > €) < 8(26%1)%@(—%2/4)

(2.6)
This results in the critical sample size
9.2v 8
Ne = 572 log g y (27)

above which with high probability

E(w) — vy (w)

Yw e W
(Vw e W) )

<e
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The same conclusions as (1.8) are now possible. By way of illustration
let us consider the first such conclusion which is the bound on vy (w*) —
E(w*). If the net of interest w* has vy(w*) = 0 (for example, if the
architecture is sufficiently rich) then we may essentially replace €2 by e
in (2.7):

4. 4
Ne = 1.60 log o4 (2.8)
€ €

samples are sufficient for £(w*) < € with high probability. Using the
same v = 50 and ¢ = 0.1 yields a sample size sufficient for reliable
generalization of about n = 14 900, which is still unrealistically high.

The VC tools and results were introduced to the theoretical computer
science community by Blumer et al. [11]. In addition to examining
methods of selecting a network 7(-; w) on the basis of 7, VC methods
are used to find

P(|lor(w) - £@) Loy 7 @), > ) <2() 272

v
(2.9)
and as pointed out by Anthony and Biggs [9, thm. 8.4.1]
. 12
Ne = 5-8v log — (2.10)
€ €

samples are enough to force this below unity. As in (2.8) we see the
O((v/€)log1/e) dependence when working near £(w) = 0. By careful
tuning of two parameters used in deriving (2.9), Shawe-Taylor et al. [48]
find the sufficient condition

- 2v
T {1- Vo)

provided that only networks, if any, having v7(w) = 0 are used. Once
more trying out v = 50, ¢ = 0.1 gives n = 6000, which is the tightest
estimate in the literature but still out of line with practice. The meth-
ods used to show (2.10) and (2.11) make strong use of the vy(w) =0
restriction so it seems unlikely that they can be extended to the case of
noisy data or imperfect models.

Haussler [30] (see also Pollard [44]) applies similar tools in a more
general decision-theoretic setting. In this framework [25], a function
l(y,a) > 0 captures the loss incurred by taking action (e.g. choosing
the class) a € A when the state of nature is y. Nets 7(-;w) then
become functions into A, and the risk r(w) := El(y,n(z;w)) is the
generalization of probability of error. This is estimated by 7#(w) :=
n~ > U(yi, m(zs;w)), and the object of interest is

P(|[ p(#(w), r(w)) [lyy > €) (2.12)

where p is some distance metric. For instance, the formulation (2.1) has
I(y,m) = (y—n)? and p(r, s) = |r—s|. Haussler uses the relative-distance
metric

logg (2.11)
€

e

r = sl

dl,(’l", S) = m

for v > 0. (2.13)
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Letting v = € and a = 1/2 yields a normalized criterion similar to
dividing by the standard deviation, but rather cruder.

Now suppose the loss function is bounded between 0 and 1, and for
each y, l(y,a) is monotone in a (perhaps increasing for some y and
decreasing for others). Haussler finds [30, thm. 8]

16e 16e *” 2
P(||dy (7 >a) <8 —log— Tt (214
(lldv(F(w),r(w))lly = @) <8 <ay ©8 au) ‘ (214

where v, is the pseudo dimension® of the possibly real-valued functions
in /V, which coincides with the VC dimension for {0, 1}-valued functions.
To force this bound below unity requires about

_ 16y, Se

Ne = 3
a“v av

(2.15)

samples. This is to date the formulation of the basic VC theory having
the most generality, although again the numerical bounds offered are
not tight enough.

When Vapnik and Chervonenkis proved theorem 2.4, it was done as
a generalization on the classical Glivenko-Cantelli theorem on uniform
convergence of an empirical cumulative distribution function (cdf) to an
actual one. To see the connection, define

Dy = [lvr(w) — E(w)l )y (2.16)

and consider the case where y = 0, = takes values in R, and n(z;w) =
l(—oo,wi(z). Then {z : (n(z;w) — y)? = 1} = (—oo,w] and &(w) =
F(w), the distribution of x.

2.6 Theorem (Glivenko-Cantelli)
D,—0 as. (2.17)

Of course this is implied by the assertion of Vapnik above on noting (as in
table 2.1) that the VC dimension of the functions n(z;w) is one, whereby
the exponential bound on P(D,, > €) implies Y .., P(D,, > €) < 00
which the Borel-Cantelli lemma turns in to almost sure convergence.

It is then natural to ask if a rescaled version of D, converges in
distribution. Kolmogorov showed that it did and by direct methods
found the limiting distribution

(VF cts.)(Vb > 0) P(vnD,, > b)—e 2" (2.18)
The less direct but richer path is to analyze the stochastic process
Zn(w) := /nlvr(w) — E(w)] . (2.19)

Doob [17] made the observation that, by the ordinary central limit the-
orem, the limiting finite-dimensional distributions of this process are

1. The pseudo dimension is defined as follows. For some training set z1,...,Zn
consider the cloud of points in R™ of the form [n(z1;w)- - n(xn;w)] for w € W.
Then vy is the largest n for which there exists a training set and a center pg € R"
such that some piece of the cloud occupies all 2™ orthants around pg.
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Gaussian, with the same covariance function R(w,v) = w A v — wv
as the Brownian bridge. His conjecture that the limit distribution of
the supremum of the empirical process Z,, (which is relatively hard to
find) equalled that of the supremum of the Brownian bridge was proved
shortly thereafter [16].

The most immediate generalization of this empirical process setup is
to vector random variables. Now w,z € R%, and n(z;w) = 1(—oo,uw] ()
where (—oo,w| := X?zl(—oo,wi] C R? so that again £(w) = F(w).
Kiefer [34] showed that for all § > 0 there exists ¢ = ¢(d, d) such that

(Vn,b > 0, F) P(v/nD,, > b) < ce~2(1-" (2.20)

Dudley has shown the equivalence for large n of the distribution of the
supremum of the empirical process and the corresponding Gaussian pro-
cess. Adler and Brown [3] have further shown that under mild conditions
on F' there exists a ¢ = ¢(F') such that for all n > n(b),

¢ 2= De=2" < p(\/nD, > b) < cb?@ Ve 2" (2.21)

thus capturing the polynomial factor. However, neither the constant
factor nor the functional form for n(b) is available, so this bound is not
of use to us. Adler and Samorodnitsky [4] provide similar results for
other classes of sets, e.g. rectangles in R? and half-planes in R2.

The results (2.18), (2.20), and (2.21) on the distribution of the supre-
mum of an empirical process are derived as limits in n for fixed b. In
a highly technical paper [51], Talagrand extends these results not only
to apply to all VC classes, but also by finding a sample size at which
the bound becomes valid. Talagrand’s powerful bound (his thm. 6.6) is
(now written in terms of (e€,n) rather than (b,n)):

2
Kgne v —one?
€ )

P oy (w) = @)y > €) < K ( (2.22)

for all n > K3v/e?, where the three constants are universal. This gives
the critical value of about
K 1/2)log K
n, — HsV(1/2)log Ka)u (2.23)

c
62

Unfortunately for any application of this result, the constants are inac-
cessible and “the search of sharp numerical constants is better left to
others with the talent and the taste for it” [51, p. 31]. It does, however,
illustrate that the order of dependence (without restriction on vy (w))
is v/€2, without the extra logarithmic factor seen throughout §2.1, §2.2.

Instead of looking at the probability of a significant deviation of vy (w*)
from £(w*), some approaches examine E &(w*). In doing this no in-
formation about the variability of £(w*) is obtained unless E £(w*) ~
E(wP), which implies £(w*) is near £(w") with high probability. In
this sense these methods are similar to classical statistical efforts to de-
termine consistency and bias of estimators. Additionally, as remarked
in §1.2, using this criterion precludes saying anything about the perfor-
mance of the selected net relative to the best net in the architecture, or
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about the efficacy of the architecture. On the other hand, the results
are interesting because they seek to incorporate information about the
training method.

Such results are usually expressed in terms of learning curves, or val-
ues of E E(n*) as a function of n (and perhaps another parameter rep-
resenting complexity). This is somewhat analogous to the €, n, and v of
VC theory, although the relation between € and E £(n*) is indirect.

Haussler et al. [31] present an elegant and coherent analysis of this
type. The authors assume that the target y is expressible as a determin-
istic function n° : RP — {0,1}, and that n° € . Assuming knowledge
of a prior mp on N which satisfies a mild nondegeneracy condition, the
authors show that

2v

) <
E&(w*) < -

(2.24)
when w* is obtained by sampling from the posterior 7 given the n ob-
servations. In the more realistic case where no such prior is known, it
is proved that

E&w*) < (1+ 0(1))% logg (2.25)

where o(1) — 0 as n/v — oo and now w* is chosen from a posterior gener-
ated by an assumed prior 7.. (The bound is not a function of this prior
except possibly in the remainder term.) Amari and Murata [8] obtain
results similar to (2.24) via familiar statistical results like asymptotic
normality of parameter estimates. In place of the VC dimension v is the
trace of a certain product of asymptotic covariance matrices.

Work on this problem of a different character has also been done by
researchers in statistical physics. Interpreting the training error vy (w)
as the “energy” of a system and the training algorithm as minimiz-
ing that energy allows the application of thermodynamic techniques.
Some specific learning problems have been analyzed in detail (most no-
tably the perceptron with binary weights treated in [49] and confirmed
by [38]) and unexpected behaviors found, principally a sharp transition
to near-zero error at certain values of n/d. Unfortunately the work in
this area as published suffers from heavy use of physically motivated but
mathematically unjustified approximations. For example, the ‘annealed
approximation’ replaces the mean free energy FElog Z(3) by log EZ(5)
(the latter is an upper bound), and goes on to approximate 9/9f of
the former by differentiating the upper bound as if it were the original
quantity. When applied to physical systems such approximations have a
verifiable interpretation; however, such intuitions are generally lacking
in the neural network setting. Neural networks, after all, are mathe-
matical objects and are not constrained by physical law in the same
way a ferromagnet is. It remains to be seen if this work, summarized
in [47, 55], can be formalized enough to be trustworthy.

Some researchers have tried to determine the generalization error for
example scenarios via simulation studies. Such studies are important to
us as they will allow us to check the validity of the sample size estimates
we find.
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100 200 300 400 500

n

500 1000 1500 2000

Figure 2.1: Cohn-Tesauro experiments on generalization

Shown are learning curves for the threshold function in two input dimensions. The
lower curve in each panel is the average value of £(w*) over about 40 independent
runs. The upper curve is the largest value observed in these runs.

Cohn and Tesauro [12] have done a careful study examining how well
neural networks can be trained to learn (among others) the ‘threshold
function’ taking inputs in [0, 1" and producing a binary output that is
zero unless the sum of all inputs is larger than p/2. This is a linearly
separable function. Two sizes p = 25 and p = 50 are chosen and the
class of nets used to approximate is linear threshold units with p inputs.?
The data distribution is uniform over the input space.

Nets are selected by the standard backpropagation algorithm, and
their error computed on a separate test set of 8000 examples. Forty such
training/test procedures are repeated to obtain independent estimates
of £(w*). Averaging these values gives an estimate of EE(w*) as in §2.4,
but for the reasons outlined there this is not our main interest; we are
rather interested in the distribution of the discrepancy &(w*) — vy (w*).
The differencing operation has little effect since in the trials v (w*) = 0
generally. We examine the distributional aspects by looking at, for
a given function, p, and n, the sample mean of £(w*) — vy (w*) and

2. Networks with continuously-varying outputs are used as a device to aid weight
selection, but the final network from which empirical and “true” errors are computed
from has outputs in {0, 1}.
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the largest observed value in the 40 trials. These results are shown
in figure 2.1. The lower curves (representing sample mean) have an
excellent fit to 0.87p/n, and the upper curves (extreme value) fit well
to 1.3p/n.

Motivated by the strength of the results possible by knowing the dis-
tribution of the maximum deviation between empirical and true errors,
we consider the Vapnik bound, which holds independent of target func-
tion and data distribution. The original form of this bound results in
extreme overestimates of sample size, and making some assumptions
about the selected network (v(w*) = 0) allows them to be reduced,
but not enough to be practical. Work to this point in the neural net
community on this formulation of the question of reliable generalization
has focused exclusively on reworkings of the Vapnik ideas.

We propose to use rather different techniques—which are approxima-
tions rather than bounds—to estimate the same probability pursued in
the Vapnik approach. In this approach, sample size estimates depend
on the problem at hand through the target function and the data dis-
tribution. We will see that in some cases, these estimates are quite
reasonable in the sense of being comparable with practice.
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§83.1 The Normal Approximation

The Poisson Clumping
Heuristic

NOW WE DESCRIBE the approach we take to the problem of gen-
eralization in neural networks. This is based on one familiar idea—a
passage to a normal limit via generalized central limit theorems—and
one not so familiar—finding the exceedances of a high level by a sto-
chastic process using a new tool called the Poisson clumping heuristic.
We transform the empirical process vy(w) — E(w) to a Gaussian pro-
cess, and this into a mosaic process of scattered sets in weight space
which represent regions of significant disagreement between £(w) and
its estimate v (w).

For the large values of n we anticipate, the central limit theorem informs
us that

Zn(w) = Vn[vr(w) - E(w)] (3.1)

has nearly the distribution of a zero-mean Gaussian random variable;
the multivariate central limit theorem shows further that the collection
{Zn(w1), ..., Zn(wy)} has asymptotically a joint Gaussian distribution.
The random variable of interest to us is || Z,(w)]|,,, which depends on
infinitely many points in weight space. To treat this type of convergence
we need a functional central limit theorem (FCLT) written compactly

Zn=>7 (3.2)

which means that for bounded continuous (in terms of the uniform
distance metric p(Z,2') = |||Z(w) — Z'(w)| HW) functionals f taking
whole sample paths on W to R, the ordinary random variables

F(Zn() = f(2()) - (3-3)

The supremum function |[|-||,,, for compact W is trivially such a bound-
ed continuous function, and is the only one of interest here. FCLT’s are
well-known for classifiers of finite VC dimension: e.g. [43, ch. 7, thm.
21] and [36, thm. 14.13] are results ensuring that (3.3) holds for VC
classes for any underlying distribution P. FCLT’s also apply to neural
network regressors having, say, bounded outputs and whose correspond-
ing graphs® have finite VC dimension [7]. These theorems imply it is

1. One of the several ways to extend the VC dimension to functions f : RP — R is
to find the ordinary VC dimension of the sets {(z,y) : 0 <y < f(z) || f(z) <y <0}
in RPHL

17
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reasonable, for the moderately large n we envision, to approximate?

P(|[ lor(w) = E@) |y, > €) = P([[1Z(w)][],, > ev/n)
< 2P(|Z(w)lly > evn)

where Z(w) is the Gaussian process with mean zero and covariance
R(w,v) = EZ(w)Z(v) = Cov((y — n(z;w))*, (y — n(x;v))*)

The problem about extrema of the original empirical process is equiva-
lent to one about extrema of a corresponding Gaussian process.

A remark is in order about one aspect of the proposed approximation.
While it is true that for fixed w

Zn(w) = Z(w)
so that, since the limiting distribution is continuous,

P(Zp(w) < @)
P(Z(w) <) noe’

this is not generally true when o = a(n) = e/n; in fact, the fastest o
can grow while maintaining the CLT is the much slower ¢/n, see [24,
sec. XVL.7]. However, this conventional mathematical formulation is
not what we desire. We only wish, for finite large n, the denominator
to be a reasonable estimate of the numerator; moreover, we do not go
into the tail of the normal distribution because we only desire to make
P(||Z(w)||,y, > b) of order perhaps .01. In other words, while we write
a(n) = ey/n, we in effect choose € so that a(n) remains moderate.

The Poisson clumping heuristic (PCH), introduced and developed in a
remarkable book [6] by D. Aldous, provides a tool of wide applicability
for estimating exceedance probabilities. Consider the excursions above
a high level b of a sample path of a stochastic process Z(w). As in
figure 3.1a, the set {w : Z(w) > b} can be visualized as a group of
smallish clumps scattered sparsely in weight space YW. The PCH says
that, provided Z has no long-range dependence and the level b is large,
these clumps are generated independently of each other and thrown
down at random (that is, centered on points of a Poisson process) on
W. Figure 3.1b illustrates the associated clump process. The vertical
arrows illustrate two clump centers (points of the Poisson process); the
clumps themselves are bounded by the bars surrounding the arrows.

Formally, such a so-called mosaic process consists of two stochastically
independent mechanisms:

2. Doob first proposed this idea for the class of indicator functions of intervals in
R!:

We shall assume, until a contradiction frustrates our devotion to heuristic

reasoning, that in calculating asymptotic xn (t) process distributions when

n — oo we may simply replace xr (t) process by the x(t) process. It is clear

that this cannot be done in all possible situations, but let the reader who

has never used this sort of reasoning exhibit the first counter example.

(17, p. 395]
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Z(w)
b
J4! D2
e
(a) w  (b) w

Figure 3.1: The Poisson clumping heuristic

The original process is on the left; the associated clump process is on the right.

e A Poisson process on W with intensity Ap(w) generating random
points P = {p} C W. We assume throughout that [, \s(w) dw <
00 so that P is finite.

e For each w € W there is a process choosing Cp(w) C W from
a distribution on sets, parameterized by b, which may vary across
weight space. For example, C;(w) might be chosen from a countable
collection of sets according to probabilities that depend on w, or it
might be a randomly scaled version of an elliptical exemplar having
orientation depending on w and size inversely proportional to b.

According to this setup choose an independent random set Cy(p) for
each Poisson point p € P. The mosaic process is

Sy:=|Jp+Cp)

pEP

See [29] for more on mosaic processes.
The assertion of the PCH is that, for large b and Z having no long-
range dependence,

15,() = Loy (Z(2) (3.4)

in the sense of (3.2). This claim is not proved in general; instead
e the idea is justified in terms of its physical appeal.

e the Poisson approximation (3.4) is vindicated by rigorous proofs in
certain special cases, e.g. for discrete- and continuous-time station-
ary processes on the real line [35].

e about 200 diverse examples are given in [6], in discrete, continu-
ous, and multiparameter settings, for which the method both gives
reasonable estimates and for which the estimates agree with known
rigorous results.



CHAPTER 3 20

Defining N, as the total number of clumps in S, and Ny(w) as the
number of clumps containing w gives the translation into a global equa-
tion and a local equation:

P(|Z(w)|lyy > b) = P(Np > 0) =1 — e~ JwHdw (3 5,)
pp(w) := P(Z(w) > b) = P(Ny(w) >0) . (3.5b)

The next result shows how to use Cp(w) = vol(Cp(w)) and the local
equation to find the intensity A\ (w).

3.1 Lemma Nj(w) is Poisson distributed. If A\y(w) and the distribu-
tion of Cp(w) are nearly constant in a neighborhood of w, and if with

high probability w + Cp(w) is contained within this neighborhood, then
ENb(’w) >~ )\b(w)ECb(w)

Proof. Note N, is Poisson with mean A, = fW Ap(w) dw. Drop the b
subscripts.

Ee*NW) _ B R {ei“N(w) ’ N}

=FFE

N
eXp(iuZ lkarC(pk)(w)) ‘ N]

k=1

N
E H Eexp(iUIPkJrC(:Dk)(w))
=1

k
=FE(1-pw+ pwem)N

= exp(—Apy,(1 —e™))

with p,, := P(w € p+ Cp(p) | p € W), the probability that a particular
clump in W captures w. The characteristic function of Ny(w) is that of a
Poisson r.v. with mean Ayp,,, proving the first assertion. For the second,
initially suppose the clump process is stationary so that A\p(w) = Ay and
all clumps have the distribution of Cy. Then p,, is the fraction of trials in
which a randomly-placed patch Cp intersects a given point w. Provided
edge effects can be ignored (Cy < vol(W) with high probability) this is
just ECy/vol(W). In the nonstationary case, let B, C W be a small
ball containing w. Dropping subscripts,

pw=Pwep+C(p)|peW)
=P(p € By|peW)P(wep+C(p)|p € Bu) +

P(pe BE|peW)P(wep+C(p)|pe BL)

(a)
~ P(p€ By |pe W)P(w ep+C(p)|p € By)

(b) (3.6)
~ P(p € By)P(w e p+C(w)|p € By)

© Jp, M) dw'  EC(w)

- A " vol(By)

@) A(w)EC(w)

o A
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where (a) is justified since B, is large enough to contain all clumps
hitting w, (b) by the local stationarity of Cp(w), (c) since again the
clump size is small relative to B,,, and (d) by the local stationarity of
the intensity. O

In our application, occurrence of a clump in weight space corresponds
to existence of a large value of Z(w), or a large discrepancy between & (w)
and its estimate v(w). We therefore anticipate operating in a regime
where N, = 0 with high probability and equivalently (Yw)Ny(w) = 0
with high probability, so that with lemma 3.1, the global/local equa-
tions (3.5) become

P(Ny > 0) =1 — e~ Jwo(w)dw @ / o (w) dw (3.7a)
w
P(Ny(w) > 0) = 1 — e 2@BGw) )\ \ECy(w) . (3.7b)

To sum up, the heuristic calculation ends in the RHS of the upper equa-
tion, and this being low validates approximation (a), showing P(N, = 0)
is near unity. A fortiori the LHS of lower equation is small, which vali-
dates approximation (b).

The first fundamental relation, which we treat as an equality, stems
from the local equation above:

| b (w) = M (w)ECy(w) | . (3.8)

Letting ®(b) = P(N(0,1) > b) and ¢?(w) = R(w,w), we have py(w) =
®(b/o(w)), and the second fundamental equation is (3.8) substituted
into the global equation (3.7b):

w’ (39)

P(|Z(w)]y >b>“/w ECy(w)

The idea behind the derivation is that the point exceedance probabilities
are not additive, but the Poisson intensity is. Local properties of the
random field (py(w), ECy(w)) allow the intensity to be determined, and
the PCH tells us how to combine the intensities to determine the overall
probability. Loosely speaking, (3.9) says that the probability of an ex-
ceedance is the sum of all the pointwise exceedance probabilities, each
diminished by a factor indicating the interdependence of exceedances at
different points. The remaining difficulty is finding the mean clump size
ECy(w) in terms of the network architecture and the statistics of (z, y).

We have described the rationale and tools for approximating in distri-
bution the random variable |7 (w) — £(w)]|| in this two-stage fashion:

Empirical Process rcrr Gaussian Process pcy Mosaic Process

vr(w) —Ew)  Zw), Rw,v)  Ap(w), Cylw)
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84.1 Notation and Preliminaries

Direct Poisson Clumping

IN THIS CHAPTER we discuss several situations in which the Poisson
clumping method can be used without simplifying approximations to
give conditions for reliable generalization. The first few results examine
variants of the problem of learning axis-aligned rectangles in R?. Later
we develop a general result applying when the architecture is smooth as
a function of w.

Finding these precise results is calculation-intensive, so before be-
ginning we mention the interest each of these problems has for us.
The problem of learning orthants is relevant to applied probability
as the first-studied, and best-known, example of uniform convergence
(the Glivenko-Cantelli theorem). Learning rectangles, closely related to
learning orthants, has been examined several times in the PAC learning
literature, e.g. in [33] as the problem of identifying men having medium
build using their height and weight. (A natural decision rule is of the
type: a man is of medium build if his height is between 1.7 and 1.8
meters and his weight is between 75 and 90 kilograms, which is a rect-
angle in R2.) The problem of learning halfspaces, or training a linear
threshold unit, is the best-studied problem in the neural network liter-
ature. The last section details learning smooth functions. The results
here have the advantage that they apply universally to all such network
architectures (e.g. networks of sigmoidal nonlinearities), and that the
methods are transparent.

Here’s what we expect to learn from these examples. First, we will
understand what determines the mean clump size, and develop some
expectations about its general form which will be important in our later
efforts to approximate it. Second, we will see that, given sufficient
knowledge about the process, the PCH approach generates tight sample
size estimates of a reasonable functional form. Finally, a side-effect of
our efforts will be the realization that, although exact PCH calculations
can be carried out for some simple cases, in general the approach of per-
forming such calculations seems of limited practical applicability. This
will motivate our efforts in chapter 5 to approximate the clump size.

We establish straightforward notation for orthants and rectangles in R%.
For u, v € R%, write u < v when the inequality is maintained in each
coordinate, and write [u, v] for {w : v <w < v}. Similarly A and V are
extended coordinatewise. Let |u| := vol([0,u]), which is zero if u ¥ 0.
The empirical processes we will meet in the first few sections are
best thought of in terms of a certain set-indexed Gaussian process. We
introduce this process via some definitions which are intended to build

23
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intuition. Let pu be a positive measure p on RP.

4.1 Definition The p-white noise W(A) is defined on Borel sets of
finite pu-measure such that:

W(4) 2 N(0, u(A))
(Vn) {Ax}k<n disjoint = {W(Ax)}r<n independent
W(A)+W(B)=W(AUB)+W(ANB) a.s.

(It is easy to verify that this process exists by checking that the covari-
ance is nonnegative-definite.) W(A) adds up a mass pu(A) of infinites-
imal independent zero-mean “noises” that occur within the set A. To
turn the set-indexed white noise into a random field, just parameterize
some of the sets A by real vectors w € W. In particular,

4.2 Definition The p-Brownian sheet is
W(w) := W((—o0,w)])

where W (A) is pu-white noise. To get Brownian sheet, take u as Lebesgue
measure on [0, 1]".

Brownian sheet is the p-dimensional analog of Brownian motion.
Returning to set-indexed processes, if p is a probability measure we
can define our main objective, the pinned Brownian sheet.

4.3 Definition The pinned set-indexed p-Brownian sheet is

Z(4) = W(A) - u(A)W (R?) (4.1)
The pinned p-Brownian sheet is defined for w € RP by

Z(w) = Z((~0, w)) (4.2)

where Z(A) is u-Brownian sheet. To get pinned Brownian sheet, take
u as Lebesgue measure on the unit hypercube.

The pinned Brownian sheet is a generalization of the Brownian bridge,
and in statistics it occurs in the context of multidimensional Kolmogorov-
Smirnov tests. The pinned set-indexed Brownian sheet inherits additiv-
ity from the associated white noise process:

Z(A) + Z(B) = (W(A) + W(B)) — (u(A) + u(B)) W (R")

=Z(AUB)+ Z(ANB) (4.3)

Its covariance is

E Z(A)Z(B) = p(AN B) — u(A)u(B)

=1/4— u(AAB)/2  (if u(A) = 1/2). (4.4)

To see the connection to the neural network classification problem,
suppose the input data x is generated in RP according to P, and y is
deterministically based on z. Let A, be the region where n(;;w) =1
and Ay be that where y = 1. Then B,, := Ay /A Ay is the region of
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disagreement between the target and the network, where (y—n(x;w))? =
1. The covariance of the empirical process is

nE(vr(w) — E(w))(vr(w') — E(w'))
= Cov(lp, (2),15,,(z)) = P(By N Bu) — P(Byw)P(Buw) (4.5)

w

which is the same as the pinned P-Brownian sheet indexed by the B,,.
The limit Gaussian process discussed in chapter 3 is, for ‘noiseless’ clas-
sification (y a function of z), the pinned P-Brownian sheet of defini-
tion 4.3.

Suppose networks 7(z; w) = 1(_co ) (x) are used to learn a target func-
tion y = y(x) = n(z;w°). If 2 has a continuous distribution F then we
may reduce the problem to a canonical form by noting

lor(w) ~ E@)lyy = sup [+ (e w?) —ngas;w)* -
I<~, . L
= sup [ (n(@0°) - (s @)’ -

where # = F(z), w = F(w), F(z) = [Fi(z1)---Fa(z4)]T, and Fj is
the (continuous) cdf of z;. Continuity ensures that the marginals of &
are uniform on [0,1], and by the construction, if the components of
are independent, then so are those of & which must then be uniform on
[0,1]". We will assume this in the sequel.

We can find the exceedance probability by first solving a simplified
problem in which the target orthant! is empty (y = 0) and it is de-
sired to learn this with other orthants; this is also equivalent to the
multidimensional Kolmogorov-Smirnov test. Then

P(llvr(w) = E(w)llyy > €) = P([Z(w)]y, > b) (4.7)
where Z(w) is the zero-mean Gaussian process with (from (4.5))
R(w,w') := EZ(w)Z(w') = |w Aw'| = w|lw'| ;

this is the pinned Brownian sheet. Although the form of (4.7) as a
function of b is known as in (2.21), the leading constant, so important
for sample size estimates, is not, and finding it is the contribution of
this section.

To set the problem up we follow Aldous [6, sec. J16]. The fundamental
relation of chapter 3 is

P(|Z(w)y > b) = /W ggz/(a) dw (4.8)

w)

1. We stretch the term ‘orthant’ to describe regions like (—oo, w] because they are
translated versions of the negative orthant (—oo, 0] of points having all coordinates
at most zero.
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where 0%(w) = |w|(1 — |w|). The numerator is exponential in b while
(see result 4.4) the denominator contributes a polynomial in b, so for
large b the exponential dominates, and it is most significant where o(w)
is largest. This surface, where |w| = 1/2, is denoted W.

We shall approximate the clump size near WV by its value on W; to find
the latter we appeal to the fact (see below) that FCy(w) is determined
by R(w,w’) for w’' near w.  To find this, take a small § € R?, let
w’ = w+ §, and partition indices into J* = {j < d : §; > 0} and J~.
Then for w € W, to terms of first order in 6,

R(w,w') = [Ty - TTews + ) — 5 T s +6) - TLtws +5)

jedt  jed- jeIt JjeI~
1 14; 1/[1 16; T
= — —— —— | = e O’ 6
2 + Z 2 wy 2 2 + Z wy + ( )
jeI~ 1<5<d
1 1 05
= - 19] +0(576)
4 - ’LUj
1<j<d

This covariance is locally the same as that of a process

d
Y (wi, ..., wg) =d /2 ZYJ(U)J)
EY,0)Y;()) = 1/4— il EY;(t) =0

By appealing to this sort of expansion, Aldous suggests that the clump
size decouples as shown below.

4.4 Result [6, (J10k),(J16e)] If the process Z(w) has a covariance of
the form

d
R(w,w') = 0 =) " yjlw; — wi| + O((w —w') (w —w"))

j=1
the clump size factors as

EC(w) = [[_, EC;j(w)
EC;(w) = 1/((v;/0°)(b/o)?)

Remark. Equation (J10k) of [6] has a typographical error, it is meant
that the covariance decomposes as a sum and not a product. To get
this result from (J10k), multiply the process in that equation by o to
match variances, and note that the rate of the original process crossing
the level b/o equals that of the scaled process crossing level b. Then
use the fundamental relation (3.8) to get the clump size from the clump
rate.

For w € W, the factors of the clump size of the pinned Brownian
sheet are therefore EC;(w) = w;/4b%. Use this and (4.8) to find the
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probability as follows. Writing w0 = [wy - - - wq_1]"

)

b/o) .
P(||Z(w)|| > b) ~ / /ECwl,..., )dwddw

[0,1]¢
-1
/H(Eci(wi))_l X
lo|>1/2 =1

L 3(b/o) g
//m 7ECd(wd)d ad (4.9)

)672b2/ /H (EC;(w;))

loj>1/2 =1

— 4d-1p2(d=1) —2b2/ /H 1/w1

lo|>1/2 =1

(@)

—
o

R

In (a) we have restricted the region of integration to those w for which
there exists wy large enough to make |w| = 1/2: these are weights with
|w| > 1/2. At step (b) we have written ® via its asymptotic expansion
(appendix §A.2) and used Laplace’s method (§A.3, corollary A.3) with
oo =1/2 and —2H = 1/w? on W.

It remains to find the constant factor

I, = / / f 11w1 ) dwi - - dwg—1
= w,; >1/2

L (gt dz (4.10)
/W (l ) (@-2)
= (log 2)d*1/(d— 1!

using the volume element (see §C.2)

vol({w € [0,1]* : 2z < [[{wi < z+dz}) = dz (log 1/2)?1/(d — 1)!

Combining (4.9) and (4.10) yields

4.5 Result The PCH estimate of exceedance probability for the pinned
Brownian sheet is

d—1
P(| Z(w)]l,y > b) = (log D)™ pa@-n) -2 (4.11)
(d—-1)!
Remark. Adler and Brown [3] in theorem 2.1 prove that for large b,
this probability is at least the above with 2 in place of 4log2 ~ 2.7, and
in theorems 4.1 and 4.2 they find the same polynomial and exponent
as above, although “the style of proof is such that it is impossible to
closely monitor inequalities so as to estimate the constants”[3, p. 14].
The dependence on b is a factor of b2 smaller than Talagrand’s upper
bound (2.22); this is because W is of dimension d — 1 rather than d.
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For d =1, (4.11) checks with the exact probability e=2" and for d = 2
it agrees with the asymptotic calculation of Hogan and Siegmund [32].
The asymptotic value is not known for d > 2. Our contribution is

in carrying out the computation of the leading constant indicated by
Aldous.

4.6 Corollary Result Let the components of the d-dimensional input
x be independent with continuous distribution, and let y = 0. Suppose
the family of orthants is used to learn y. Then

d
€2

Ne =

samples are sufficient for reliable generalization.

Proof. At the critical value of n the probability (4.11) with b = ey/n
drops below unity. Taking the log, applying Stirling’s formula, and
assuming d > 1 yields the criterion

log(4elog 2) + log(b?/d) — 2b*/d < 0
which occurs at b?/d = 1.02 ~ 1. O

4.7 Corollary Result Let the components of the d-dimensional input
x be independent with continuous distribution, and let y = 1 on some
orthant. Suppose the family of orthants is used to learn y. Then

d

samples are sufficient for reliable generalization.

Proof. Let Z be the pinned set-indexed Brownian sheet introduced in
84.1. A value of n slightly larger than n. ensures that with high proba-
bility

(Yw € W)|Z(]0,w])| < b/VIT . (4.12)

The function y to be learned corresponds, after the nonlinear map-
ping (4.6), to a fixed orthant [0, wp], and the region of disagreement
between y and n(w;x) is now [0, wp] A [0, w], which is not an orthant.
However, by additivity of the set-indexed process,

Z([0, wo] A [0, w]) = Z([0, wo]) + Z([0, w]) — 2Z([0, wo] N[0, w])

The sets indexing the RHS are all orthants, so (4.12) and the triangle
inequality imply that with high probability the last two terms have
magnitude less than 3b/+/11 uniformly in w.

The first term is a fixed normal random variable with variance at
most 1/4, so

P(Z([0,wo]) > (1 —3/V11)b) < &(2(1 - 3/V11)b)

o (
< ®(.19v11d)

—d/5

IA
-
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which is negligible for large d. So with high probability,

(Vw € W) |Z([0,wo] A0, w])| <b . O

The VC dimension of the class of orthants in R? is d (table 2.1), so
results 4.6 and 4.7 are directly comparable to the Vapnik bound of (2.2):
ne = (9.2v/€%)log 8/e. The functional form of the new PCH-based re-
sult eliminates the undesirable log1/e term, as well as yielding smaller
sample size estimates (even using the imprecise shortcut of result 4.7).

Now we solve the related problem of learning rectangles. Again first
let y = 0 but now classify the data using n(x;w) = 1j,,)(x), where
u<v € Rand w = [u™wT]T € R??. Supposing the cdf F of the
random x is continuous and independent across coordinates allows us
to assume without further loss of generality that x is uniform on [0, 1]".
Using (4.5), the derived process Z(w) is zero-mean Gaussian with

R(w,w') := EZ(w)Z(w')

=|(wAv) = @Vu) = v —ullo’ =] ;

Writing down (4.8), we see that the maximum-variance region W :=
{w : |v —u| = 1/2} dominates the probability.

Again we estimate FCj,(w) by examining the covariance locally about
points in W. To do this write v' = v 4 0¥, v’ = u + §*, and partition
the d indices into four sets J*~ = {j : 67 > 0 > 0}'}, etc. Proceeding
as before,

1
R(w,w') = [(v A V') = (uV )| = 5" = |

T (w5 =) =63 - TTC(ws = wy) +63) x

JeEITF jEI~~
11 (vj =) - TT (s —uy) + (65 — 62))
jeat- jea~+

1 v u
—5 1T (@ —wy) + (65 —63))

1<j<d
1 1 |67 1 |67 -
=171 vow A2 g TO0D)
1<j<d 1<j<d

Just as in the case of orthants, the covariance has a cusped shape at w
and the clump size factors. By result 4.4, for w € W,

ECy(u,v) = [, EC!(u,v)EC (u, v) (4.13a)
EC!(u,v) = EC?(u,v) = (v; — u;)/4b* . (4.13b)

Let @ = [u;---ug_1]" and & = [v1---v4_1]". The PCH procedure
would have us find (suppressing some function arguments)
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vy
y / Yj
1
/ 2
Zj
7
B
1 1
uj
0 1
Figure 4.1: The region of integration in (4.14)
The boundary B is at the value B =1/(2 H{C;i (v, —ug)).
o(b/o)
P(|Z >b) dugdvg ---du; d
(12 >0 = [+ [ G sdugdug- - du do
0<u<v<1
d—1 L =
(a) //H du; dv, dvg (I)(b/a)du
EcvECY | ECYy ) ECY T
0<a<o<1 J 1/2|'v il
|o—a[>1/2
d—1 1
(b) e_2b2/---/ H du; dv; dvg
= ECtECY | ECY
0<a<o<1 J 1/2\1) al
|o—a|>1/2
d—1 L
W o@p2)-1em2 [ / | R / dvg
Al C Rl ?))
0<a=<9<1 1/2|5—l
|5—a|>1/2

where () follows from restricting the region of integration to W, or those
@, ¥ for which a final component u4, vq exists for which |[v—u| = 1/2. As
in the case of orthants, (b) results after using the asymptotic expansion
for ® and applying Laplace’s method (corollary A.3) with o9 = 1/2 and
—2H = 1/(vg—uq)? on W. Finally, relation (c) just uses the clump size
of (4.13) and that w € W.

The remaining factor is expressed as an iterated integral using the
property that at stage j of integration, v; —u; must be large enough to
have [],_; (vx —ux) > 1/2. As long as the product is this big, successful
choices for the remaining variables indexed j+1 through d can be made.
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The integral is

// duq dvy // dus dvs y
(U1 - U1 V2 — uz

0<u,v1<1 O<u2,v2<1
1)17’(1121/2 1)27’(1221/2(’017“/1)
dud 1 dvd 1
) dvd
-1 — Ud—1
0<ug—1,vd— 1<1 vg<1 (414)
Vd—1—Ud—12> va>1/2 14 (v —ug)
1/2T1{ 2 (v —us)
1 1 1 1
1—21 1—22 ].—Zd,1
= / dzl dZQ R dzd,1 e dzd
Z1 z2 Zd—1
1/2 1/221 1/221“'2(1,2 1/221"'de1

since the d — 1 integrals over y; = v; + u; (see figure 4.1) are easily
performed. The dependence on [](1 — z;) as well as [[z; makes a
simple transformation of variables impossible. To evaluate the constant
we note that I; = I;(1) under the recursive definition

Ii(z) := / dy (4.15a)

Tu(z) = /1/2 l;yId_l(zy) dy  (d>1). (4.15h)

4.8 Lemma
1 (log2z)%4-1

L) = 5 " aa— 1),

M(d,2d;1og2z)

where the confluent hypergeometric or Kummer function [1, ch. 13]

M(a,b; 2) i

| IS]

=
k!

Sl

and a* = a(a+1)---(a+ k — 1) is the kth rising power of a. Further,
V2 < M(d,2d;log2) < 2
Proof. The intricate calculation is in the appendix, §C.3. O

Combining these results yields

4.9 Result The PCH estimate of exceedance probability for the rect-
angle indexed Brownian sheet is

(4log2)2d-1 1 op?
P(| Z(w)|y > b) ~ 2M(d,2d; log2)mb2(2d De—2b

where the Kummer function M lies between /2 and 2.
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Remark. By the sandwich bounds of Adler and Samorodnitsky [4, ex.
3.2] the dependence on b above is correct. The VC dimension of rect-
angles is 2d, so the result is of the same form as Talagrand’s, although
again with a smaller polynomial factor. This is an extension of Aldous’s
sketch for d = 2, although his equation (J17d) seems to be incorrect.

4.10 Corollary Result Let the components of the d-dimensional in-
put = be independent with continuous distribution, and let y = 0. Sup-
pose the family of rectangles is used to learn y. Then

Ne = —
€2

samples are sufficient for reliable generalization.

Proof. We discard the leading factor of 2M (d, 2d;log2) since it is not
important for d large. What remains is precisely the estimate of re-
sult 4.5 with 2d for d. O

4.11 Corollary Result Let the components of the d-dimensional in-
put x be independent with continuous distribution, and let y = 1 on
some rectangle. Suppose the family of rectangles is used to learn y.
Then

2d
Ne = 116_2

samples are sufficient for reliable generalization.

Proof. Similar to corollary 4.7. Let process Z be the pinned set-indexed
Brownian sheet. If n is slightly larger than n. then with high proba-
bility all rectangles have |Z([u,v])| < b/v/11. Additivity of the pinned
Brownian sheet implies that the mismatch process satisfies

Z(luo, vo] & [u,v]) = Z([uo, vo]) + Z([u, v]) = 22 ([uo, vo] N [u,v])

and since the intersection of two rectangles is again a rectangle, the
triangle inequality shows that the last two terms are uniformly bounded
by 3b/+/11. A simple pointwise bound on P(Z([uo, vo]) > (1—3/v/11)b)
completes the argument. O

We note the satisfying result that as the VC dimension increases from
d (orthants) to 2d (rectangles), the predicted sample size increases in
the same way. As in the case of learning orthants, the PCH sample
size estimates are of the order v/e?, without the extra log1/e, and the
sample size estimates are notably smaller than the VC bound, especially
in the first result which is more carefully calculated. Our benchmark
example of v = 50, € = 0.1 gives in this case n. = 5000 versus the VC
prediction of 202 000.
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Now we analyze the most fundamental example of a neural network: the
perceptron, or linear threshold unit. Suppose that the data distribution
P is rotationally invariant, and that n(z;w) = 1[0700)(wa); this is a
homogeneous linear threshold unit. Further, let y = n(z;w®). The
networks are invariant to a positive scaling of the weights, so we assume
wTw =1, i.e. W is the surface of the unit ball in R4t! and there are d

free parameters. Without loss of generality we can take w® = [10---0]T;
the problem is invariant with respect to rotations about the axis w°. In
this section we define

wly = (wTw)? (4.16)

this is distinct from the earlier notation |w|.

As before we proceed by identifying the set of maximum-variance
points and finding the clump size there. Letting A,, be the halfspace
defined by the normal vector w, oriented to contain that vector, we see
that

0% (w) = P(Ayo A Ay) (1 — P(Ayo A Ay))

is maximized when w'w® = 0, which defines the set W. The clump size
is constant on W by rotational invariance. To find ECj(w), develop a
local approximation for the covariance about any point w € W which we
take as w = [0--- 0 1] without loss of generality. Then w' = [w] - - - w/; d]

for appropriate 6 ~ 1, and using (4.4), the covariance becomes

R(w,w') = i - %P((Aw A Awo) A (Aw/ A Awo))
—1_1p(A, AAy)
=1_LcosTH(ww)
4.1
=1 — L cos7!(6) (4.17)
) . d .2 1/2 /2 .2
:Z_ﬂ(zwk) +O0(w” + - +wg)

k=1

where we have used the Taylor series for cos~!. This covariance is not
of the same form as the Brownian bridge.
Aldous suggests

4.12 Result [6, sec. J18] The clump size for a so-called isotropic pro-
cess having covariance

R(w,w') = 0% —v|w — w'ly + o(|lw — w'l,)
for w € RY is
ECy(w) ~1/(Kax (v/0*)*(b/0)*?) (4.18)
d-? < K4, <1 (4.19)
where K, 1 is the isotropic constant.

Proof. Scale the process of section J18 by ¢ to match its variance to
the one above. The rate of the original process crossing the level b/o
equals that of the scaled process crossing level b. The fundamental
relation (3.8) then allows the clump size to be found from the clump
rate. O
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In such a case the covariance does not decouple so the clump size does
not factor. For the process at hand, for w € W,

(ECy(w))™' = (8/m)4 Kg1 0% . (4.20)

The exceedance probability is then easily written down via (3.9) as an
integral over the effectively d-dimensional weight space

P(|Z(w) ]y > b) ~ /W eb/ow) \,

EC(,(’U))
1 _

(a) 2\(d—1)/2 @(b/o(w1))
= 1— Z\0/9\"1))

/71 [’idd( wy) } ECy(wy) dwn
(b) 1 ™ _op?
~ d—=——

% d] g o = 0 302 &P

8d

™ 9 _op2
ZZ Kd,1b2d 26 2b

m4/2T(d/2)
(4.21)

The original integrand is a function of w; only, and at step (a) we have
performed the integral over the other d — 1 coordinates resulting in the
bracketed factor, the surface area of a sphere of squared radius 1 — w?
embedded in R?. (Recall kg is the volume of the unit sphere in R%.)
Relation (b) follows on writing ®(b/o) via its asymptotic expansion
and applying Laplace’s method (corollary A.3) to the remaining one-
dimensional integral with —H/2 = 1/7% and o9 = 1/2.

Remark. The VC dimension of this classifier architecture is p = d + 1,
so the bound of Talagrand has the same exponent but its polynomial is
too large by a factor of b*. This method of calculation and the constant
are new results.

The probability approximation leads directly to

4.13 Corollary Result Let x have a radially symmetric distribution.
Suppose we desire to learn a halfspace y with a perceptron architecture.
Then the critical sample size satisfies

%z <n. < (1.36 + (1/3) logd)d

€ €2

(4.22)

Proof. Use the bounds for K in result 4.12. See §C.4 for details. [

Again we see that the sufficient sample size is a constant, quite close
to unity, times the number of parameters divided by €2. (The term
1/3logd does not play a significant role as it lies between 1.36 and 2.72
for 60 < d < 3500.)

Now we pass to a qualitatively different regime in which Z(w) is smooth
enough to admit a local approximation, allowing direct computation of
the clump size. By smooth, we mean that Z(w) should have two deriva-
tives, at least in the mean-square sense, in w. In neural net regression
(as distinct from classification), this is often assured since the network
is typically made of sigmoidal functions

1

ol@w) =

(4.23)



DIRECT POISSON CLUMPING 35

that have bounded derivatives of all orders. In such a case the original
process vr(w) — £(w) has two almost sure derivatives if the second
moments of z and y exist finite.

We can then write a quadratic approximation to Z in the vicinity of
a point wy:

Z(w) ~ Zo + (w — wo) G + %(w — wo) TH(w — wy) (4.24)

where the gradient G = VZ(w) and Hessian matrix H = VVZ(w) are
both evaluated at wy. One pictures a downward-turning parabola peak-
ing near wo which attains height at least b; the clump size is the volume
V of the ellipsoid in R? formed by the intersection of the parabola with
the level b. Provided Zy > b and H < 0, simple computations reveal
that

(2(Zy — b) — GTH™1G)4/?

V = ka “H (4.25)
We then wish to approximate
ECy(wo) ~ E[V | Z(wo) > b] . (4.26)

There are two issues here. The evident one is that since Cp(wp) is de-
fined on a different probability space than V' (which is derived from
Z(-)), these two random variables can only be equal in distribution.
The subtle distinction is that the condition Z(wg) > b is not precisely
equivalent to occurrence of a clump center at b, which conditions the
event on the left above; in fact, the latter implies the former. However,
it is apparent that the two events are closely related so that the approx-
imation is reasonable. (We shall have more to say on the tightness of
this approximation in chapter 5.)

The conditional mean of V' is computed as follows. The same argu-
ment used to show that Z(w) is approximately normal shows that G
and H are approximately normal too. In fact,

- —z
o2 (wo)
AOQ(’LUQ) =-—-F Z(wo)H

= —Vu Vi R(wo,w)

E[H | Z(’LUQ) = Z] AQQ(’LUQ)

|'w:wo

so that, since b (and hence z) is large, the second term in the numerator
of (4.25) may be neglected. (The notation Age is mnemonic for expec-
tation of the product of zeroth and second derivatives of Z(w).) We
take the additional step of replacing the random Hessian by its mean,
leaving

—1/2 /2
E[V|Z(wo):z]f:nd\/§d Ao (wo) (z—b)d

o2 (wp) z
The exceedance volume is then found by integrating out on z:

Aga(wo) |

E[V | Z(wg) > b] ~ md\@d 2 (wp)

I
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where the remaining factor is (abbreviating o = o(wyp))

d/2
I .= (i)]. /OO <Z b> 6722/202d2:
g z
i/ < ~ b> 7zb/o'26722/2o'2 dz
0' z
/2 252 /2p2
:/ <x+b2/02> e %e dx

[ [y e

b2
We again use b > o to justify the asymptotic expansion for ®. The
bracketed quantity is monotone increasing in b and has unity as its
pointwise limit, so dominated convergence yields

~

242~ dg

> Q

_

d AQQ(’U)Q) -
o?(wo)

g

1/2 d
ECy(wo) ~ ka2 (g) T(d/2+1) (4.27)

where the RHS is both the asymptotic value and an upper bound. This
is what we need for

4.14 Result Let the network activation functions be twice continu-
ously differentiable, and let b > o(w). Then provided Agz2(w) > 0,

EC (w) ~ (27)%/2 (U(w)/b)d
b(w) ~ (2m) Aoa(w)/02 ()2

The RHS is both the asymptotic value and an approximate upper bound.
Proof. Substitute kg into (4.27) and use I'(d/2 + 1) = (d/2)I'(d/2). O

Remark. The relationship of this clump size to those in results 4.4 and
4.12 can be seen by expanding the covariance around wg:

R(wo + w,wp +w') =

o5 — = [wh W] [_AX?I _AZZ;] {w] +o(wTw+w'Tw') (4.28)

where

Ay = EGG" =V, Vo R(w,w') >0 (4.29)

|w='w/=wo

Of course R(wq,wo+w) = 03 — %wTAog w so again it is the behavior of

the covariance about wy, in this case captured by Ags, that determines
the clump size. In this case the sample paths are more regular so the
clumps are larger, of order 1/b? rather than this squared as with the
nondifferentiable processes in previous sections.

Remark. At a local variance maximum, it is easy to see from (4.28)
that Aga(w) > 0, so the expression for clump size is well-defined.
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Substituting into the fundamental equation (3.9) yields

1/2<a<3u>>dq’ (i)

(4.30)

N S
e 22w dw
(76a)

where use of the asymptotic expansion ®(z) ~ (zv/27) !exp(—22/2)
is justified since (Yw)b > o(w) is necessary to have each individual
probability P(Z(w) > b) low—let alone the supremum. To proceed
further, we need some information about the variance o?(w) of (y —
n(z;w))?. In general this must come from the problem at hand, but
suppose for example the process has a unique variance maximum &2 at
w. Then the d-dimensional integral can be approximated, yielding

A02 (w)
o?(w)

P(|Z(w)]| > b) ~ (2m)" % /
w

4.15 Result Let the network activation functions be twice continu-
ously differentiable. Let the variance have a unique maximum & at w
in the interior of W and the level b > &. Then the PCH estimate of
exceedance probability is

|A02(w)|1/2 a/b o2 /26°
Aoz (@) — Ag1 (@)[/* V2r

Bor(@)* &
| Ao2(w) — A (w)]? /)

P([1Z(w)llyy > b) ~
(4.31)

Furthermore, Aga — A11 is positive-definite at w; it is —1/2 the Hessian
of 0?(w). The leading constant thus strictly exceeds unity.

Proof. Applying Laplace’s method (corollary A.3) to the integral (4.30)

results in (4.31) with a leading factor |A02(w)|1/2/|—VV02(w)/2|1/2.
The indicated derivative is
VVE Z(w)? = EVVZ(w)?
=2EVZ(w)V'Z(w) + 2E Z(w)VVZ(w)
= 2(Ani(w) — Apz2(w))
At a strict maximum of variance, this must be negative-definite. O

The above probability is just P(Z(w) > b) multiplied by a factor to
account for the other random variables in the supremum.

The estimate of exceedance probability is easily turned into a sample
size estimate:

4.16 Corollary Result Let the network activation functions be twice
continuously differentiable. Let Var((y—n(xz;w))?) have a unique maxi-
mum &% at w in the interior of VW and the level b > &. Then the critical
sample size for reliable generalization is

B de?log K

Ne
e2
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K = |Ao2(0)] / |Aoz(w) — Ara(w)] = [Ig — 1\02(1‘7)_11\11(117)\71

Proof. For large d, the factor of &/by/2 in result 4.15 is negligible. The
2

remainder drops below unity at the given value of b? = ne2. O
Again we see the O(d/e?) dependence. The constant depends rather
weakly on the distribution and architecture, via the logarithm of K,
the reciprocal of the geometric mean of the eigenvalues of the matrix
I, — Aog(’ll_})ilAu(’u_}).

In the complementary situation where the process is normalized by
its standard deviation o(w), the variance is unity and all networks make
a contribution to the exceedance probability. When the clump size is
put into the fundamental equation (3.9), we find

4.17 Result Let the network activation functions be twice continu-
ously differentiable, and the level b > 1. Then the PCH estimate of
exceedance probability is

An

P( o?(w)

The probability estimate on the right is correctly invariant to scaling
both Z(-) and the index set W.

1/2
dw . (4.32)

|| > v) = em?2 s0) /W

Proof. By result 4.14, the clump size at some point wyp is a function
of the second derivative of the covariance at that point; call the corre-
sponding quantity for the normalized process Ags. It is given by
Z (wy) vV Z(w) ‘

o(wo) o(w) lw=wo

R(wo, w)

o(wg)o(w) ‘w:wo

Apo = E

=VV

The expansion (4.28) tells us
o(wy +w) = oo(1 — Jw' (A2 — Ar1)w/op)

R(wo,w) = o5 (1 — 3w Aga w/ap)

and after some routine algebra we find Ags = A1x /o2 > 0. The result is
obtained by substituting the clump size into the fundamental equation.
O

In place of the estimate of a constant multiple of ®(b) in the case of
a unique variance maximum we now have a factor of b¢ to account for
the other, now more prominent, variables. The corresponding sample
size estimate is

4.18 Corollary Result Let the network activation functions be twice
continuously differentiable. Then the critical sample size for reliable
generalization of the normalized process is

_d(3.2+1.2logd +2.4log K)

Ne 3

€
Kd::/
w

dw

Ay (w) ‘1/2
o?(w)
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Above this sample size, with high probability,
(Vw € W) |Z(w)] < eo(w)
Proof. See §C.5. O

If d > 20, say, then in order for K to make a significant contribution
to the sample size, it must be above about 17, or the integral must be
on the order of 20¢. So although K cannot be calculated directly in
any but trivial problems, the required sample size is not highly sensitive
to changes in the data distribution or the architecture. We obtain a
sample size on the order of d(3.2+ 1.2logd)/€? over a fairly broad class
of problems.

In this chapter we have demonstrated how to use the PCH in an idealized
setting to estimate sample sizes needed for reliable generalization. If
analytic information about the process of exceedances is available, which
it may be if the architecture and the target function are simple, the
maximum-variance points can be characterized and the mean clump
size computed there. This size is typically proportional to 1/ where
a =1 for a rough (nondifferentiable) process and a = 2 for a smooth
one. In the most general terms, the constant of proportionality depends
on the data distribution and the architecture, and for a given problem
the constant is a function of the location of the clump in weight space.
More specifically, the constants depend on the local behavior of the
covariance R(wp,wp + w) about the point of interest. To reinforce this
idea we summarize results 4.4, 4.12, and 4.14:

Name 1 — R(wo, wo + w) ECy(wo)
Cusped >iy vilw] 1/(IT5=, b?)
Rough Isotropic (Z?Zl (yw;)?) 1/2 1/(Ka,17%%d)
Smooth wT Agpw/2 (2m)4/2 /(| Aga|"? bd)

The exceedance probability is calculated from the variance and clump
size information in a way that is generally complex if exact results are
desired. However, the probability is for our purposes fairly closely deter-
mined by qualitative factors like the maximum variance of the process
(which defines the exponential factor ®(b/5)), whether the process is
smooth or rough (determining the exponent of the leading polynomial
in b), and how many weights there are (which controls the exponent of
any leading constant factors). We saw this especially in corollaries 4.13
and 4.18, where the unknown or loosely-bounded constant factors had
a small effect on the sample size.

The results we have found (all except one for unnormalized processes)
agree in functional form with known bounds in the empirical process
literature; agreement also holds in the few low-dimensional cases for
which precise asymptotics are known. On the other hand, in the context
of the neural network literature where the Vapnik bound is the only
tool allowing explicit estimates, then new sample size approximations
have eliminated a wasteful factor of log1/e as well as coming equipped
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with tight constants. The results for orthants, rectangles, and linear
threshold units are quite satisfying.

Of course, if they are to be useful in practice, sample size estimates
cannot rely on detailed knowledge of the data distribution and the target
function. Having in this chapter shown that the PCH method gives
informative sample size bounds, we turn in the second part of this work
to ways of making it practical.



§5.1 The Mean Bundle Size

Approximating Clump Size

WE HAVE SEEN that the Poisson clumping technique allows compu-
tation of the sample size needed for reliable generalization when suffi-
cient analytic information is known about the process to approximate
it locally and thus compute its clump size. In practice such detailed
information is not available, and as a remedy, in this chapter we work in
steps towards a tractable approximation to clump size. First we intro-
duce a tight upper bound to the clump size, called the bundle size, and
show the additional role it plays in rigorous lower bounds to exceedance
probabilities independent of the PCH context. We then show how to
compute the bundle size from the covariance information of the Gauss-
ian process. Finally, we define a related ‘correlation volume’ which can
be estimated in a robust way from the training data.

We start by defining a simpler analog of the clump size.

5.1 Definition The unconditioned bundle size of the process Z is

Db ::/ 1(b7oo)(Z(’LUl))d’w/
w

This is simply the volume of weight space where Z(w) climbs above level
b. With high probability D, = 0 because no exceedance is observed,
motivating the more useful

5.2 Definition The mean bundle size of Z is
E[Dy| Z(w)>b] . (5.1)

We briefly alter the overall level of this discussion to remark on two
technical issues. First, if the sample paths Z(w) are continuous as func-
tions W — R, then D, is well-defined since it is the measure of the
open set Z’l((b, oo)) Second, continuity of Z also ensures that D is
a random variable by the following argument. Clearly Dy > x( only
if there is an open G C W, of Lebesgue measure x > g, over which
Z(w) > b. Since finite unions of open rectangles having rational end-
points approximate open sets, G must contain such a finite union having
measure greater than zy. On the other hand, if such a union of rect-
angles with measure more than z( is contained in G, it must be that
Dy > xg. Formally,

Dv>zy=J U U (N{Zw) >t}

z>x0 N21 G=U;<yR; weq
vol(G)=zx

41
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where z is rational, the R; are rectangles having rational endpoints, and
the components of w are rational, so all operations are countable and
the left-hand-side is measurable.

As the name suggests, the bundle size is different from the clump
size because the former includes all exceedances of the level b, not just
the region corresponding to a given clump center. The bundle size
is therefore an overestimate when the total number of clumps N, ~
Pois(Ap) exceeds one, but recall that we are in a regime where b (or
equivalently the number of samples n) is large enough so that Ay, < 1
and

P(Ny>1) 1—e M — Ape

= <
P(Nb = ].) Abe*Ab -

Ay e™ <1

DN | =

The overestimate of ECy(w) by E[Dy|Z(w) > b] due to inclusion of
multiple clumps is negligible. We will call the assumption that at most
one clump occurs in W the “single-clump condition.”

There is, however, another source of error due to biased sampling.
To make this evident, fix b and suppose clumps are generated homoge-
neously at rate A (with Avol()W) <« 1) and from the same distribution
across the weight space; say that with equal probability clumps are cubes
of volume either o or g8, with a < 8. Of course ECy(w) = (o + 5)/2.
On the other hand, since with high probability there is either zero or
one clump, if Z(w) > b then D, equals either « or 3, but not with equal
probability. For suppose p is the Poisson point (clump center) whose
corresponding clump has captured w. Then D, equals « if p fell within
the cubical region of volume « placed around w, and (3 if p landed in the
larger box of volume 3. Given that w is covered, then, a large clump is
more likely to have done it, and, assuming the single-clump condition,
E[Dy| Z(w)>b] = (o + %) /(a+ B) (For a < 3, the mean bundle size
is about twice the mean clump size.)

It is easy to quantify this sampling effect via

5.3 Proposition [6, sec. A6] Let fc be the density of Cy(w), and as-
sume (as in lemma 3.1) that the rate \y(w) is nearly constant in some
ball B,, about w, that the distribution of Cy(w) is essentially constant in
B, and that Cy(w) < vol(B,,) with high probability. Then under the
single-clump condition, the conditional density of Dy, given Z(w) > b is

_ vfe(v)
20) = By

Proof. The proportion of B,, covered by clumps having volume in (v, v+
dv) is vAfe(v)dv; this is the volume of such clumps times their rate of
occurrence. The average proportion of B,, covered by any clump is
AECy(w) which is again the rate of occurrence times the average size.
The ratio is the probability that a covered point in B,, is covered by a
clump of volume in (v, v + dv); this is also fp(v)dv. O

A nice way to express the overestimate is

E[Dy| Z(w)>b]  ECy(w)?
ECw) (EChw)E = (5:2)
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As in the example, the variability of the clump size controls the accuracy
of its bound via the bundle size.

Now we show how the above picture of the bundle size as an approx-
imation to clump size can be strengthened considerably: it turns out
that the bundle size is also a tool for obtaining rigorous lower bounds
to exceedance probability, without appeal to the PCH. (See also appen-
dix B.) First we present a modified union bound for discrete unions [5]
to develop intuition.

5.4 Proposition Let S1,59,... be measurable sets and N be the num-
ber of sets occurring. If N < oo a.s. then

P(lJs) =3 P(s) BN 5]

Since N > 1 on S;, the union bound follows easily.

Proof. N; := N1 on S; and zero otherwise is well-defined by hypothe-
sis, and the simple equivalence

0
1U S; = ZNilS«; a.s.

i=1

- P([j SZ) = iENilsi
] i=1

=1
=Y EE[N;ls,|1g,]
=Y El5,E[N;|1g,]
=> E1s,E[N;|Si]
= P(S) E[N"'| S}
since N; = N~ on S;. O

The next proposition is an extension to uncountable index sets W C
R?. For clarity we make explicit the dependence on the experimental
outcome w €  (further distinguished from w € W by the underbar).

5.5 Proposition Let S,, C Q be measurable sets for each w € W, and
let 6 be a measure on WW. Assume that

D=Dw):=0{weW :we Sy,}) (5.3)

is a well-defined random variable. If the regularity conditions D(w) < 0o
a.s. andw € S, = D(w) > 0 are met, then

P(U ) = [ P EID™| S0 o(dw)

weW

In order for D(w) to make sense, for each fixed w the f-measure must
be defined. Then, the resulting function 2 — R must be a random
variable.
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Proof. The regularity conditions on D(w) allow us to define D,,(w) =
1/D(w) for w € S, and zero otherwise. Proceeding as before,

1y s, a.s.:/ Dy,lg,, 0(dw)
w

P(U ) = [ EDuLs, o(aw)

weWw

:/ EE[Dy1s, |1s,] (dw)
w

_ / Els,E[Dy|1s,]6(dw)
w

:/ Elg, E[Dy | Sy]0(dw)
w

:/ P(Sw) E[D™!| S,] 0(dw)
w

since Dyy(w) = D™ (w) if w € S -

5.6 Corollary If Z(w) is continuous and D;, < oo a.s.,

PUZOy >0 = [ proet iy e

b/o)
d
/EDb|Z >

Proof. Take 0 as Lebesgue measure and Sy, = {w € Q : Z(w) > b}
in the proposition. Then D(w) = D;. As shown after definition 5.1,
continuity of Z(w) as a function W — R ensures that D; is a well-
defined random variable. In fact, continuity tells us that the preim-
age Z~*((b,00)) C W is open a.s., so if Z(wg) > b the preimage is
also nonempty and its Lebesgue measure is positive. The second as-

sertion is a consequence of the harmonic mean inequality: f > 0 =
(EfY)y"' <Ef. 0

We note that the analytic part of the PCH can be obtained, using
the single-clump condition to express the conditional density of Dy, by
substituting

ED, | 260) > 07 = (o7 o) o )
(/ ECb (0)d )—1 (5.4)

= ECy(w

into the corollary.

The bundle size approximation replaces the difficult-to-find ECy(w)
with the more transparent

E[Dy| Z(w)>b] = /W P(Z(w') > b| Z(w) > b) dw' . (5.5)
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From the clump sizes presented in §4.6, we expect the estimate (5.5) to
be, as a function of b, of the form (const o /b)* for, say, k = d or k = 2d.
In particular, we do not anticipate the exponentially small clump size at
w resulting from (Vw') P(Z(w') > b| Z(w) > b) ~ ®(b/c’). To achieve
these polynomial sizes, the Z(w') and Z(w) must be highly correlated,
which we expect to happen for w’ in a neighborhood of w. As with
clump size, the behavior of the covariance in a neighborhood of w is the
key to finding the bundle size at w.
Since Z(w) and Z(w') are jointly normal, abbreviate

o=o(w)
o =o(w')
p = plw, v) = R(w,w')/(00")
, n1—pc'/c
¢= ()= (/o) =5 (5.6a)
(1 vz
= <m> (if o constant) . (5.6b)

To show how to compute (5.5) we need
5.7 Lemma For p >0, (>0 and po/o’ <1,

3 ((b/0)C) < P(Z' > b Z > b) < B((b/0)\/1+ )/ B(b/o)
The lower bound to P holds even for { < 0.

Proof. For independent standard normal (X,Y),

72l o=zl b

so that

P(Z'>b,Z >b)=P(cX >b,d'pX +0'\/1—p?Y > )
— P(X >b/o, Y > abjo — BX)

where a = (0/0’)/\/1—p? > 0 and 8 = p/+/1 — p?> > 0. The corre-

sponding region L is shown in figure 5.1; L is bounded by the lines

L:x=bjo
:y=ablo—Bx

which intersect at pn = (b/c,{b/c) since o — 5 = (.

The lower bound is easy. No matter what ( is, line £’ slopes downward
implying that L contains the rectangular region x > b/o, y > (b/o.
Independence of X and Y implies the probability of the latter set is
D(b/o) P(Cb/o).

For the upper bound, we seek the closest approach p, of L to the ori-
gin, which clearly occurs either on the vertical boundary, on the oblique
boundary, or at pn. The first case is precluded by the condition ¢ > 0.
Observe that p. = pn if the point on £ nearest to 0 falls to the left
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e// g L

¢b/o Pn

g/

e//

T

o JIT /o

Figure 5.1: Finding a bivariate normal probability

This shows the geometry of the Gaussian integral in lemma 5.7.

of ¢. Differentiation and some algebra shows that this occurs provided
po/o’ < 1.

Thus let £ be the line passing through p~ which is perpendicular to
the line connecting 0 and pn. Let L” be the halfspace above and to
the right of ¢”. Then L C L"” so P(L) < P(L"). But by rotational

invariance of (X,Y), P(L") = P(X > (b/o)/1+ (?). O

Now it is easy to show

5.8 Result Ifb/o > 1 and po/o’ <1,
E[Dy | Z(w)>b] z/ ®((b)o)¢)dw' . (5.7)
w

Proof. The integrand of (5.5) is P(Z(w') > b| Z(w) > b). Fix some w’
and suppose for the moment ¢ > 0. Apply the lemma, and then note
that since b > o, the asymptotic expansion for the upper bound part
of the lemma yields (for, say, b > 30; see §A.2)

3((b/0)¢) <P(Z'>b|Z> ) < V% exp(~4((b/0) )?)

< 1.lexp(—1((b/0)¢)?)
(5.8)

On the other hand, if { < 0, the lower bound of the lemma and the
trivial upper bound show

B((b)o)C) <P(Z' >b|Z>b)<1 . (5.9)
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Integrating the conditional probability to find E[Dy | Z(w) > b], we see
the only w’-dependence is through ¢. For ¢ < 0, (5.9) shows the lower
bound is off by at most a factor of two. For positive ¢ near zero, (5.8)
shows the lower bound is again within small constant factors of the upper
bound. (Here we are not in the tails of ®.) Finally, for ¢ far from zero,
say greater than unity, the upper bound differs from the lower bound
by a small constant multiple of ((b/c). A small disagreement in this
regime is unimportant since this part of the integral does not contribute
much to the bundle size—the integrand is exponentially small. O

The bundle size estimate of clump size will be used in the fundamental
equation (3.9) to find

P(1Z(w)ll,, > b) ~ / e’ bi{ﬁ —dw (5.10)
w

We have remarked that the bundle size represents those weights w’
for which Z(w') is correlated with Z(w). To see how ( captures this
idea, note that the probability estimate in the integral is determined by
weights where o(w) is maximized. (This includes the case where o(w)
is constant.) Then po’/o < 1so ¢ > 0. In order to have ¢ small, it is
necessary to have p ~ 1, or in other words w ~ w’. On the other hand,
weights w’ not highly correlated with w have ¢ so large that ®((b/c)()
does not make a significant contribution to a bundle size of order (o /b)".

To sum up, we have presented and developed, in the context of Poisson
clumping, an upper bound E[Dj | Z(w) > b] to mean clump size whose
final expression is lemma 5.8. When used in place of ECy(w) in the
fundamental equation

1mwmmw>m~[¥;ggww, (5.11)

corollary 5.6 shows that a lower bound to the exceedance probability
results, notwithstanding the validity of the PCH. The tightness of this
lower bound is given by (5.2) or the harmonic mean inequality; it in-
volves the variability of the clump size.

We can use result 5.8 to check our belief that the mean bundle size is a
good estimate of the clump size. For instance, suppose the covariance
is of the ‘cusped’ form like the Brownian bridge of result 4.4,

d
R(w,w +v) =02 — Zvj|vj| +0(™) (5.12)
j=1
and the variance is either constant because of normalization, or of a

smoothly varying form like 0% (w +v) = 02 — av"v. Then the condition
po/o’ <1 is met, and in fact

M&

5 v (5.13a)

plw,w+v)~1-— Ji
o?

J

C(w,w + v) ~ 1( |%f2 (5.13b)

V2

- Il
Il SO
—_
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The estimate of ECy(w) is

E[Dy| Z(w)>b] ~

Jj=1 Jj=1

m 24 5 20%\d [

ey = (%) /0 2 8(Vz) dz
j=1

(©) ga—1(2d . Yo ()

=2 <d> H02 (b)
j=1

@ gd—1 <2dd> ECy(w)

(5.14)

Relation (a) follows by a change of variables u = Mwv for M a diagonal

matrix; step (b) is the substitution z = Z?:1|uj| where the volume
element is

vol({u € R : Y|uy| € (2,2 +dz2)}) = %c,l((z +d2)* — 2%

The integral at (c) is done by parts; see §C.6. Finally (d) just uses the
clump size from result 4.4.

The overestimate is about 2% - 22¢ = 8¢, or a factor of eight in each
dimension of the weight space; also note that the dependence on the level
b and the local expansion +; is captured. Because of the exponential
behavior of the exceedance probability for large b, such constant factors
do not influence the sample size much. In a similar fashion E[Dy, | Z(w) >
b] can be computed (§C.6) for the other process models we have come
across, with results summarized below:

Name 1 — R(wo,wo +w) E[Dy|Z(w)>b]/ECH(wo)
Cusped Z?:l v;lw;| 8d

Rough Isotropic (Z?Zl('y wj)Q)l/2 64 to 149(d/2)!
Smooth wT Agg w/2 < 2d

In each case the factor introduced in substituting E[Dy | Z(w) > b] for
ECy(w) is a small constant per weight.

The bundle size can be used directly in a lower bound to exceedance
probability if one has information about the covariance of Z; we shall
see an example of the use of such information to find E[Dy | Z(w) > b]
in chapter 6. However, since we ultimately desire an estimate which
is computable from the training set, in this section we make one more



APPROXIMATING CLUMP SIZE 49

simplification, which also reveals an important property of the integral
of result 5.8 for E[Dy | Z(w) > b].
We introduce

5.9 Definition For 7 <1 let
Vr(w) :={w" €W : ((w,w') <7} ,
then the correlation volume of the process Z is
Vr(w) := vol(Vr(w))

As mentioned below result 5.8, the major contribution to the bundle size
comes for {(w,w’) ~ 0, and in standard situations this means p(w, w') ~
1. Thus V;(w) and its volume V;(w) represent those weight vectors w’
whose errors Z(w’) are highly correlated with Z(w).

From the monotonicity of ®

E[Dy| Z(w)>b] > /v BB/ b 2 V) B/
’ (5.15)

The bound being used is the simple ®(3z) > ‘5(,67')1(700,7] (2). In this
case it is quite accurate, as we shall see.

In some cases the correlation volume is convex or nearly so. Consider
the important special case of a process with constant variance (e.g. the
self-normalized case). Because the function p — ((1 — p)/(1 + p)) Yz
is monotone decreasing, w' € V.(w) is equivalent to p(w,w’) > (1 —
72)/(1 + 7%). So if two points w’, w” € V. (w) then

Bp(w,w') + (1 = B)p(w,w") > (1 —72)/(1+77)

If the correlation p(w, -) is concave in its second argument then p(w, Sw’+
(1 — B)w") is at least as large as the LHS and the convex combina-
tion is also in V (w). For our purposes p(w,w’) need not be con-
cave for all w’ € W; concavity in the neighborhood of w for which
p(w,w') > (1 —72)/(1+ 72) is enough. In particular, either of

plw,w+v) ~1—v"Mwv+ o(v'v)
d
pw,w+v) ~ 1= ;lv;| + O(v"v)

=1

are approximately concave if 7 is small.
Let us show that the bound (5.15) gives reasonable results in our stock
of examples. For the cusped covariance of (5.12), we found

d .
Clwow+v) = = (30 2 joyl) (5.16)
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so that

d
Vi (w) =~ vol({v € R* : Z % lv;| < 27°})

j=1
d o d
=2d. H T g vol({u € R* : Z|u]| <1}) (5.17)
j=1 " j=1
4d L2 2
d! . ]1;[1 Y T

The approximate lower bound to clump size is ®((b/o)7)V; (w), where
the parameter 7 < 1 is our choice. Using the asymptotic expansion for
® and differentiating yields the threshold

b2
72—2:2d—1:2d ;
o

in retrospect a large d (say d > 5) justifies use of the asymptotic expan-
sion. The approximate lower bound is

2

d d 5
B0y Z(0)>1) 2 8V s (2a77)' 1%

Ll T (o)

where we have used the Stirling approximation and the asymptotic ex-
pansion for ®. This differs by a factor of essentially only v/d from the
actual integral as computed in (5.14).

It is similarly possible (§C.7) to find the correlation volumes for the
isotropic covariance and the smooth process. The results are as below.

(5.18)

Name Vi (w) Ratio
Cusped (4%/d!) - H (o 2/'yj) 2 \/2rd
Rough Isotropic 2 nd( 2 /'y) V2rd
Smooth < 2%y ‘A02/02‘71/2 7 ~ vrd

In the table
E[Dy| Z(w)>b)
V:(w) ®((b/o)7)

The correlation volume given for the smooth process is an upper bound
which is achieved if the variance is constant, and the corresponding ratio
is also exact in that case.

The central conclusion to be gained from this table is that the cor-
relation volume approximation to bundle size is quite accurate—by our
undemanding standard it is as good as an equality. The quality of the
approximation is due to the large dimension of the weight space: most

Ratio :=



§5.6 Summary

APPROXIMATING CLUMP SIZE 51

of the mass in the correlation volume is found near the boundary of
V,(w), and this is where the constant approximation to ®((b/c)() is
tightest. To estimate the bundle size at a point, rather than needing to
find ®((b/o) () across all w' € W, we need only find the boundary of
V:(w), the set of significant (.

We have approximated the overall exceedance probability by a construc-
tion like

P(|Z(w)]lyy > b) ~ /W (b/0)

EC(,(’U))

This is a sum of the point exceedance probabilities—the numerator—
each weighted according to how many other points are stochastically
related to it. A large weighting factor indicates strong correlation of the
network in question to neighboring nets, so its contribution to the ex-
ceedance probability is decreased; smaller factors indicate a more jagged
process and give a larger contribution.

In this chapter, motivated by practical difficulty in finding the mean
clump size, we have introduced several other measures of the idea of
‘stochastically related’:

(a) 1 —1
ECy(w) =~ E[D; " | Z(w)>b|
(b)

(5.19)

IN

E[Dy| Z(w) > 1]

@ /W B((b/o) C)du!

SV, (@) B((b/0) 7)

The first two sections of the chapter show that (a) holds under the
single-clump condition, discuss the cause and size of inequality (b), and
show that E[Dy|Z(w) > b] can be used in a PCH-style lower bound
without appeal to the PCH. In §5.3 we prove (c), which uses ¢ to link
the weighting factor to the process correlation. This also allows compu-
tation of bundle sizes by direct integration; comparisons to the corre-
sponding clump sizes show that the dependence on process parameters
is preserved, but some multiplicative constants, which are not very sig-
nificant for our purposes, are introduced. These constants represent the
gap between the true asymptotic value of the probability as given by
PCH and the lower bound as found via the mean bundle size. Finally,
§5.5 introduces (d) and finds correlation volumes by elementary calcula-
tions. The result is that negligible inaccuracy is introduced in the final
approximation.

There is an interesting link between the VC dimension (definition 2.2,
lemma 2.3) and the several recastings, in terms of the stochastic process
Z(w), of the idea of inter-weight dependence. The counterpart of (5.19)
for self-normalized Z(w) and, say, the correlation volume, is

P25, > 0) =20 |, varam
vol(W)
V; (w) ®(br)

(5.20)

(5.21)
= 3(b)Ey
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where the expectation is taken with respect to a uniform distribution on
W. This probability is the worst-case point exceedance probability times
a number representing degrees of freedom, or essentially independent
networks. It is the average (across W) of the number of network-clusters
at correlation 7 present within Y. This number of degrees of freedom
plays the same role as the Sauer bound on distinct dichotomies does
in the VC setup (see especially the proof sketch of the Vapnik bound,
theorem 2.4), except that it retains dependence on the underlying data
distribution P, the target function, and the network architecture. In
addition, as we shall soon see, the number of degrees of freedom as
defined in this chapter can be estimated from the training data.



§6.1 Estimating Correlation
Volume

Empirical Estimates of
Generalization

In a search for a usable adjustment factor in the integral for the ex-
ceedance probability, we have progressed from the mean clump size (in-
tractable in practice), through the mean bundle size, to the correlation
volume, which is determined by the covariance function of Z. Now we
show how to estimate the correlation volume of a given weight using the
training set. Then we present an algorithm which uses such estimates to
find approximations for the probability of reliable generalization in the
absence of analytical information about the unknown P and the poten-
tially complex network architecture N'. Two simulation studies, one for
the problem of learning orthants and the other for learning halfspaces,
show that the proposed empirical method works.

Until now we have obtained the correlation volume via elementary con-
siderations involving the process covariance; here is how to estimate it
empirically. Fix a weight w € W. A (noisy) oracle for determining if
some w’ is in V,(w) uses the training set to compute first

(y1 —n(z1;w)%, ., (Yn — n(Tn; w))?
(1 — n(z;w0)2, .., (Yn — nl@a;w'))?

and then successively

P =3[t - vr(w]”
AQ(w/) — %Z x“ /))2 _ VT(’LUI)}Q
R(wvw/) = Z -'171; ))2 - VT(w)} X

[(yi - W(xi;w'))Q - VT(WI)}
plw,w') = Rw,u')) (6 (w) 6 (u)
Cww') = (66 L 221LE

V1-p?

1\ 12
( A) (if o constant)
1+p

>
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Figure 6.1: Estimating ¢ for binary classification

In the upper plot, the curves nearly coincide. The ratio in the lower plot is shown
in percent.

Then {(w,w') is compared to 7 to see if w’ € V,(w) or not.

It is possible to reliably estimate ¢ in this way, even when p ~ 1.
Figure 6.1 illustrates this for the problem of binary classification. The
error (y—n(w;z))? is a Bernoulli random variable, and ¢ is formed from
n 1.i.d. pairs (for w and w’) of such variables having a given variance and
correlation. Choosing o = ¢’ = 1/2, the correlation is then varied from
0.8 to nearly unity, resulting in ¢ dropping from about 1/3 to quite small
values. (The estimator C is forced to find the variances even though they
are the same in this example.) The upper panel shows ¢ and the sample
mean of 100 independent QA estimates, each of which is computed on the
basis of n = 1000 pieces of data. This plot shows the scale of { and
demonstrates that é is essentially unbiased, at least for n moderately
large. The lower panel shows the ratio of standard deviation of f to ¢,
expressed as a percentage, for n = 1000 (upper curve) and n = 10000
(lower curve). Only for quite low values of ¢ does the variance become
significant. However, this variability at very low ¢ does not influence
estimates of V; (w) as long as the threshold 7 is moderate, which in this
simulation would mean greater than 1/20 or so.
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A natural way to estimate V;(w) is to select a set A around w large
enough to enclose V;(w). Sample uniformly in that set M times, ob-
taining m hits on V;(w), and form the Monte Carlo estimate

m

Vi (w) =~ vol(A) i
This scheme has a problem. If there is an overlap of just a factor of
two in the width of A relative to V,(w), then on the average M = 2¢
is necessary to expect even one hit—and this is far too many samples
if d = 50. This is true even using importance sampling drawing from,
say, a two-sided exponential distribution. Any uncertainty of the ‘char-
acteristic length’ of the sampling distribution (e.g. the 1/e width of
the exponential or the standard deviation of a Gaussian) is magnified
tremendously by the dimension of the weight space.

In fact, the problem of finding a good (having relative error of size
less than d®?) approximation to the volume of a convex set by a deter-
ministic algorithm using calls to a membership oracle is NP-hard [37,
sec. 4.1]. The recent discovery of a randomized polynomial-time algo-
rithm [18] is of no practical use since the running time is of order greater
than d'6 [37, sec. 4.2].

In our problem, we can use certain reasonable properties of V;(w)
to help estimate the volume. For example, we know V. (w) is centered
about w, and can assume it extends symmetrically away from w. The
simplest technique is to let w’ = w except in one coordinate and sample
along each coordinate axis, stopping when w’ ¢ V,(w). If V,(w) is at
least approximately convex (see the remarks after its definition), it is
approximately contained in the cube defined by these intercepts, and
in turn contains the simplex defined by them. The ratio of these two
estimates is unfortunately d!. If the shape of V,(w) is known, one can
do better than this.

The basic relation is the lower bound and approximation

P([[Z(w)lyy >b) = / ED”(Z/(U))b]dw

/f bI;/a) v o
W 0'

where the latter holds for po/o’ < 1. We have seen that P is in turn
upper-bounded as

b/a
f_/ Vo (w) B((b)o)r )dw , (6.2)

where the bound becomes a very tight approximation if 7 is chosen
correctly. We wish to use the estimate of correlation volume to find the
integral.

Before going ahead, we take the important step of normalizing the pro-
cess by its standard deviation o(w), which is desirable for reasons other
than analytic simplicity. Primarily, normalization avoids the undesir-
able property (remarked on in §1.3, §4.6) of the sample size estimate n,
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being dominated, via the exponential factor ®(b/c), by a small group of
networks which are unlikely to be chosen as models. Such a dependence
on the maximum-variance networks becomes especially problematic in
the empirical setting, where the variance is not known exactly—finding
networks of maximum variance becomes an optimization problem on the
order of network selection itself. As a desirable side-effect of normaliza-
tion, the condition po /o’ < 1 holds, and (6.2) simplifies to

o(b) -1
) /WVT(w) dw . (6.3)

P < =
d

This can be estimated by a Monte Carlo integral, using the method of
§6.1 to find the integrand V; (w).

The method we propose is outlined in pseudocode form in figure 6.2.
The procedure contains an outer loop over randomly drawn w € W and
an inner loop over the d coordinates of a weight vector. Some parts of
the code are left ambiguous, such as the precise method of adjusting
to find a boundary, the termination criterion in the loop for §, and the
method of finding the volume of the piece of V,(w) that the loop on &
locates. These parts could all be different depending on the application.
(For example, architectures with smoothly varying outputs can use a
root-finding method or approximate slope of ¢ for locating the boundary
of V(w).)

The remaining difficulty is the choice of 7, which as we saw in §5.5
depends on b, which is unknown to us at the outset. Recomputing the
integral for many different 7 or b values can be avoided by making the
reasonable assumption that

Vi (w) = K (w) 724 (6.4)

with @ = 1 (rough process) or 2 (smooth process); see the table in
85.5. Thus a depends only on known qualitative aspects of the archi-
tecture. The coefficients may change as w varies but the basic form of
the correlation does not.

Once the integral is computed for a reference 79, it can be scaled to
a desired 7 < 1 via

P< @(b‘l’)(")/ (7 [ vty aw) (6.5)

The only 7-dependence in the lower bound is in the denominator of the
leading factor; we wish to maximize it:

d - 2d/a 1 d 2dja—1 _
I O(br)T ~ dT¢(bT)T =0

= 7? =2d/a —1~2d/a

We have seen several times (e.g. the table at the end of §5.5) that this
choice of 7 causes the inequality (6.5) to become very tight. With this
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sum =0
for N =1 to Nyeight
w = random(W) [¥]
forj=1tod
0 =dp
while (0 < 0) & (w + de; € W)
w' = w+ de;
if {((w,w')) <7
increase ¢
else
decrease ¢
check termination
endwhile
if 6 has both increased and decreased
boundary(j) =0
else
go to [#]
endfor
V: (w) = volume(boundary)
sum = sum + 1/V,(w)
endfor
integral = vol(W) x sum/Nyeight

Figure 6.2: An algorithm for estimating generalization error

The symbol e; denotes a vector in VW with a one in coordinate j and all others zero.

in mind we write

p(|| 2

o(w)

N b2\ 7 _ ng/af Vo (w) =t dw
_< ) @(b)[@/a)dﬁv@( adja) | (66)

- ep(a@) (%) a0

where the final line defines Q.

Here we consider again the problem of learning orthants by performing
a simulation using the method outlined above to estimate exceedance
probability. As in section 4.2, nets are indicator functions of translated
negative orthants in R?. The output y = 0 and input vectors z are
distributed uniformly on [0, 1]%. Networks are discontinuous so Z(w) is
‘rough’ with ao = 1.

Before stating the results, we remark on one difficulty with binary
classification problems such as this one. The method for determining
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Table 6.1: Estimates of correlation volume, learning orthants

Empirical V;(w) Predicted V;(w) Log Ratio

2.39 x 10~ 1T 2.02 x 10~ 11 0.16
1.47 x 10~ 11 9.26 x 1012 0.46
2.56 x 10~ 11 6.66 x 1012 1.34
6.41 x 1014 5.67 x 10713 —2.18
1.51 x 10~ ¢ 1.57 x 10~ —0.03
1.55 x 10~ ¢ 8.63 x 10~12 0.58
3.88 x 1012 5.89 x 1013 1.88
4.98 x 1012 3.40 x 10712 0.38
5.41 x 1012 1.00 x 10~ 11 —0.62
8.89 x 10~13 2.38 x 10712 —0.98
2.12 x 10714 8.19 x 10~13 —3.65
1.18 x 10~ 13 1.76 x 10~12 —2.70

correlation volume is based on varying w’ about a chosen w to see when
w' € V;(w). For an orthant classifier w having |w| < 1, no matter
how much one coordinate w; is altered, the classifier often acts identi-
cally on the training set. For example, suppose w has all coordinates
less than 1/2, and d is large. Then with high probability, no  in T
is classified positively by n(-;w) since P(z < w) = |w| < 27%. Setting
w’ by increasing say wi to unity is unlikely to change the classification
of any point since then P(x < w’) < 279*!; similarly decreasing w;
to zero has no effect. The algorithm sees this as 62 = 6’2 and p = 1
SO (A is indeterminate for any w’. Such points w must be discarded,
which effectively restricts the algorithm to sampling regions where |w|
is not exponentially small. Interestingly, as we shall see, the result-
ing bias is not large enough to affect the sample size estimates greatly
since all that is needed is order-of-magnitude estimates of the correla-
tion volume. This difficulty would not arise if the network output varied
continuously with w, for then a differential change in w would produce
a corresponding change in output; the problem is an extreme example
of why smoothly varying networks are often used in practice.

Table 6.1 shows a dozen randomly chosen points w € [0, 1]d, for d = 6,
and their associated correlation volumes. These volumes are found by
the method described in this chapter, and by the theoretical prediction
of correlation volume (see §C.8)

d

Vi (w) ~

~ lw|(1 — |w|)4r2® . (6.7)

The threshold used is 7 = 0.1 and n = 8192, large enough to ensure that
the difficulty mentioned above is unlikely to happen. For the empirical
volume estimates, the extreme points of V, (w) are found by varying just
one coordinate of w, and the correlation volume is taken to be the size
of the smallest ‘diamond-shaped’ region containing those points. In this
way we exploit to some degree our knowledge of the Brownian sheet
covariance (see (5.17)) to find the most accurate correlation volumes for
comparison to theoretical predictions. In the rightmost column is the



EMPIRICAL ESTIMATES OF GENERALIZATION 59

Q —logd
3.5 : . . T T T T
Theoretical

3l - Empirical + i

25 ¢ e
2 r "‘-‘, |
15+ |
05 + |
0

-0.5 f el -
N ++++j°0 ,,,,, Q.

-15 I | ) | 1 1 T + d

0 2 4 6 8 10 12 14 16

Figure 6.3: Empirical estimate of the leading constant in the case of learning
orthants.

Crosses are estimates of @@ obtained using the training set; diamonds are theoretical
predictions. The dotted line is an approximate curve fitted to the points.

log ratio between the two volumes; this is never even as large as d. The
table verifies that, in principle, it is possible to generate quite accurate
estimates of correlation volume using our empirical method.

In figure 6.3 is a graph of @ versus d for this scenario. At each d,
50 independent estimates of ) are averaged to get an idea of average
performance.! Each such Q is found via a Monte Carlo integral using
100 points w, as described above, with correlation volumes determined
from a training set of size 100d. (Points w for which no correlation
volume could be found were discarded and a new choice made.) The
reference level was 79 = 0.1.

Corresponding theoretical predictions of the scale factor for the prob-
ability are also shown; they are based on choosing 100 points w at ran-
dom and performing a Monte Carlo integration just as for the empirical
correlation volume. In this case the correlation volume used is (6.7)
instead the empirical estimate. The agreement of this theoretical inte-
gral with the empirical curve is quite close. The theoretical curve has
larger @ values because it does not reject the weights w for which |w| is
extremely small; such weights also have very small correlation volumes
which increases Q.

Also on the plot is the fitted curve Q — logd ~ (4/d) — 1.3; the

1. This averaging would not be done in practice but is used here to get an idea
of typical @ estimates. The sample standard deviation of the empirical @ decreases
smoothly from 0.5 at d = 1 to 0.2 at d = 16. That of the theoretical ) decreases
from 0.5 to 0.15.
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conclusion is that

exp(dQ) ~ exp(d(4/d — 1.3 + logd))

71.3ddd (68)

:€4€

Using this fitted curve, we find (see §C.9) that a critical sample size of
about

_ 25dlogd

Ne
62

(6.9)

is enough to ensure that with high probability,
7 (w) = E(w)]

wew VEW)I—E@))

As remarked in §1.3, under the proviso that the selected network has
v (w*) = 0, we may in essence replace €2 by €

As another application of the proposed algorithm, consider the following
example of a perceptron. Nets are n(z;w) = 1jg,o0)(w’ ) for w e W =
R?, and data z is uniform on [—1/2,1/2]¢. Suppose y = n(x;w’) and
w® = [1 --- 1T, Nets are discontinuous so Z(w) is ‘rough’ with o = 1.
We will call this version P-Emp meaning the perceptron using empirical
analysis.

We have seen two versions of this problem before. In §2.5 are ‘learn-
ing curves’, somewhat analogous to our tradeoff between n, d, and e,
for a similar problem. In that problem data is uniform on [0,1]% and
the target function equals unity if the sum of inputs exceeds d/2; this
is just a spatial translation of the problem we consider. The difference
is that the networks used as models have continuously-varying outputs.
Nonetheless we would expect some rough agreement between the esti-
mates of generalization ability. We will call this setup P-CT after the
authors of that study.

In §4.4 exact PCH methods were applied to a problem like this one,
except that the data distribution was rotationally invariant. Also, the
ordinary distance of vy (w) from &£ (w), not relative distance, was used,
and this tends to give pessimistic estimates of generalization ability.
We will call this setup P-An for the perceptron network with analytical
knowledge of the data model.

For the perceptron, as demonstrated in §4.4, the set of inputs on which
a network w’ disagrees with w is a wedge-shaped slice of [—1/2,1/2]%.
By varying just one coordinate of w to get w’, this region eventually is
made to have appreciable probability measure. The problem that arose
with learning orthants does not come up here.

In figure 6.4 is the empirically determined @ versus d for the threshold
function. At each d twenty independent estimates of ) are averaged.
Each estimate of @ is found via a Monte Carlo integral using 50 points
sampled at random from W, as described above, with correlation vol-
umes determined from a training set of size n = 100d.

Over the range, say, 7 < d < 50, we see Q ~ 1 and from (6.6),

i

o(

2, > 0) = @/t 2 (6.10)
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Figure 6.4: Empirical estimate of the leading constant for a perceptron architecture

Error bars span one sample standard deviation in each direction from the sample
mean.

(1/d) 1ogp(

Z(w) HW > b) ~1+ log(b2/d) _ (1/2)(52/d) (6.11)

o(w)

This falls below zero at b?/d = 5.4 implying

b2 n€?
— = ~ 5.4
d d
5.4d
€

samples are enough to ensure that with high probability,

7 (w) — E(w)]

vew VE)(1—Ew) _©

In particular the relations (1.8) hold with high probability for n a bit
larger than n..

Now, following the discussion of the relative distance criterion in §1.3,
if the selected network has vr(w*) = 0, we may essentially replace €>
above by e. Under this proviso, we see that

5.4d
Ne = —— [P-Emp] (6.13)
€
samples are enough for reliable generalization, and in particular for
E(w*) < e with high probability.
This can most easily be compared with the estimate in result 4.13,
for the P-An setup:

13d _ - _ d(1.36+ (1/3)logd)

e — €2

[P-An] (6.14)
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The relative distance criterion has improved the sample size estimate
considerably, especially for small €, as expected.

Finally, in the P-CT problem, the true model y is exactly repre-
sentable in the class of neural networks, so v (w*) = 0 can be attained.
In fact most realizations used in computing the sample averages sat-
isfy that restriction, and almost all have vy (w*) < 0.01. As discussed
in §2.5, the values of E€(w*) making up the learning curve do not di-
rectly correspond to our €; we proposed to examine instead the largest
of the values observed in 40 independent trials. Cohn and Tesauro (see
figure 2.1) find that generally

1.3d
The estimate (6.13), based on our more stringent conception (uniform
over networks) of reliable generalization, predicts that £(w*) < 5.4d/n
with high probability. The sample sizes disagree by about a factor of
four.

The correlation volume, defined in terms of the covariance function of Z,
is easy to estimate because the covariances can be estimated using the
training set. Using the correlation volume to analyze the self-normalized
process leads to a simple integral over the weight space of the reciprocal
of correlation volume, which can be done by Monte Carlo integration.

This procedure was tried on two examples. The first, that of learning
orthants in the relative distance formulation, is one that can be ana-
lyzed directly, so it provides a test of the empirical approach. The two
methods give very similar answers.

The second example, more interesting from the neural network point
of view, is learning halfspaces. While this problem cannot be analyzed
directly, the resulting estimates of generalization can be compared to
experiments in training real neural networks. The empirical approach
gives estimates of sample size needed for reliable generalization that are
within a factor of four of the experimental values.



Conclusions

We are motivated by the recent success of applications of neural network
methods to diverse problems in classification and estimation. These
applications are typically distinguished by the following characteristics:

e the problem at hand is poorly understood statistically;

e nonlinear models of high complexity are used as estimators or as
classifiers;

e the data models are selected on the basis of performance on a given
training set.

In such a situation, prior knowledge of the characteristics of an optimal
or near-optimal solution is vague and statistical assurance that the se-
lected model has good performance is essential. Turning this reasoning
around, the frequent success enjoyed by applications of neural networks
indicates that some principle of generalization is at work.

There are several ways to make the notion of generalization precise.
We have argued that ‘reliable generalization’ can usefully be taken to
mean that sample size is large enough so that for some small €

| lor(w) — E(w)| ||y, < € with high probability . (7.1)

This clearly ensures that the true error of the chosen network agrees with
its observed error. Furthermore, the criterion (7.1) allows conclusions
of a global nature to be drawn about the performance of the chosen
network relative to the best network in the class. Such information can
be used to adjust the architecture in a principled way.

Existing results, pioneered by Vapnik, provide bounds that differ by
orders of magnitude from the experience of neural network practitioners.
Research to date on global measures of generalization such as (7.1) has
been based on refinements of the original Vapnik tools. Much of this
work applies only to the special case where the empirical error can be
forced to zero by the training algorithm. These results imply a number
of samples of order (v/e?)log(1/e), or (v/€) log(1/¢) if the empirical error
is driven to zero.

We pursue a new approach to the problem. Starting with the idea
that the difference process v (w) — £(w), when properly scaled, is ap-
proximately normal, we introduce the Poisson clumping heuristic as a
means to analyze the regions of weight space where a significant dis-
crepancy between £(w) and its estimate vy (w) exists. The heuristic
tells us that the overall exceedance probability is the sum of the point

63
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exceedance probabilities diminished by a factor having to do with the
typical area of such a region:

PUZy >0~ [ FEEE = [ THTD

(7.2)

The numerator is well-understood. Expressions for the denominator
depend on having a good knowledge of the Z process, and our subse-
quent efforts are directed at calculating or approximating this weighting
factor.

In a few cases the clump size can be found exactly; in chapter 4 we
work out some examples to provide a reference point and to demon-
strate the calculations involved. We find (results 4.6 and 4.10) that
for the problem of learning with orthants in R? and of learning with
rectangles in RY, d/e? and 2d/e* samples are needed, respectively. For
the rather similar problem of learning halfspaces (the perceptron archi-
tecture), about 1.3 d/e? samples are needed (result 4.13). In the qual-
itatively different regime where the neural net outputs vary smoothly
with changes in the weights, we again (result 4.16) find sample sizes
of order d/e?, although this time the constant is given in terms of a
hard-to-evaluate covariance matrix. These figures eliminate the log1/e
factor in the Vapnik bounds as well as showing that the constants are
in some cases rather small, implying that for a few typical problems
anyway, the Vapnik bounds are very loose. Thus the problem posed by
the criterion (7.1) does not in itself impose unreasonable sample sizes.

We find that there are two ways to proceed: one is to work with (7.2)
directly, and the other is to use a self-normalized version

Z(w) ~ [ 20

P( o (w) HW ” b) - /W ECy(w) dw (7:3)
where the clump size is now that of the normalized process. Using this
criterion later in chapter 4 (result 4.18), we find that the number of
samples needed for reliable generalization can be reduced to the order
of d(3.2 + 1.2logd + K)/e, where the constant again depends on the
architecture and distribution. Since the dependence on the unknown
constant is rather weak, over a rather wide class of problems we find a
dependence of small constants times (dlogd)/e.

We view these results as encouraging, but as suggesting a more prag-
matic approach. In chapter 5 we develop two more notions of an ap-
propriate ‘weighting factor’, the bundle size and the correlation volume.
We show (corollary 5.6) that the bundle size figures into the rigorous
lower bound

P(IZ()ly > 1) > | mdw

Through result 5.8, E[Dy | Z(w) > b] is linked to the process covariance,
a connection which is exploited via the introduction of the correlation
volume V;(w). The latter is a rigorous lower bound to the bundle size,
but by working a series of examples we discover that, when the param-
eter 7 is chosen correctly, the bound becomes very tight indeed.
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Finally in chapter 6 we recommend a method for estimating the corre-
lation volume at a given point using the training data itself. Exceedance
probability estimates are then given by

Z(w) ~ <D(b) / —1

P|Z3],, > 0) = gm0 dw

The proposed method uses a Monte Carlo integral to estimate the outer
integral, and searches locally about w to find the boundaries of V, (w).
The procedure is tested on two simple examples familiar from chapter 4:
learning orthants and learning halfspaces. In the latter case, estimates
of the number of samples sufficient to learn a function differ by only a
factor of four from experimental results using the common backpropa-
gation algorithm. The simulations we have done indicate that for some
problems the new method can provide useful guidance to practice.

To balance these conclusions we discuss some limitations of this re-
search. Two related objections concern the heuristic basis of our work.
First, in determining rates of strong convergence of the empirical pro-
cess v (w) — E(w) to zero, we use a central limit theorem (for which no
convergence rate is known) to model the process of error discrepancies.
Second, while we do find asymptotic values for exceedance probabilities
of the limiting process, it is not known how quickly the asymptote is
approached. Both of these difficult questions are still the active concern
of probability theory, but practically they are probably not the largest
hole in our arguments. We note that the central limit theorem has
very broad applicability so it is reasonable to expect it to hold in the
relatively straightforward framework (independent summands which for
binary classification are 0/1 random variables) considered here. Simi-
larly, as we have noted in chapter 4, for those situations in which the
exact (non-asymptotic) exceedance probability is known (primarily in
low dimensions) the asymptotic value is approached quite rapidly. Sim-
ulations of the pinned Brownian sheet in d = 2, for example, show that
the asymptotic formula of result 4.5 is quite close to correct even for
b = 1.25; such results are not unusual [2, p. 135].

I believe there are two principal gaps in the story presented here.
The first is the upper bound (which we use as an estimate) of mean
clump size by E[Dy | Z(w) > b]. Although it is a physically reasonable
approximation, and in the examples we consider it lowers the probabil-
ity estimate by unimportant constant factors, adoption of the bundle
size is a source of error which does not vanish as the level b becomes
large. Furthermore, in contrast with the central limit theorem, little
is known about how universal an approximation this is. The second
gap is the estimate of correlation volume when certain boundaries of
the corresponding set are known. Even if the correlation volume is con-
vex and the estimates of the boundary locations are exact, there is an
uncertainty of as much as d! in the resulting volume estimate. Unless
something is known about the geometry of the correlation volume, this
error remains a problem.

Finally, we return to an incompleteness of this work connected with
the stringent requirement (7.1). We have seen indications that in certain
problems—the perceptron for example—there is little penalty (perhaps
about a factor of four in sample size) in requiring simultaneous agree-
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ment of empirical and true error across all weight space as opposed
to at w* only. For discrete weight spaces (e.g. W = {0,1}9), this
may no longer be true; as mentioned in §2.4, in certain experiments
with ‘discrete perceptrons’ there is a critical sample size above which
the generalization error of the chosen network drops suddenly to zero.
While the framework we have presented gives reason to believe that
EE&(w*) ~ O(d/n) provided (Fuw® € W) E(w®) = 0, these experiments
show more complex behavior. We conjecture that the discrete space
allows a sudden transition to perfect generalization by eliminating the
possiblity of infinitesimal ‘jitter’ about a given point in weight space. If
so, global agreement between empirical and true error may not always
be of interest.

There are evidently more subtleties to the phenomenon of reliable
generalization than are captured by any theory to date. It is anticipated
that the ideas and methods presented here are a usable contribution to
this, as yet unknown, theory.
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§A.1 Stirling’s formula

8§A.2 The normal tail

Asymptotic Expansions

Recall the well-known estimate

e

d
d ~V2rddle ! ~ <£Z> . (A1)

On several occasions we will desire compact expressions for probabilities
like
b2 _ log(d!) b?

1

2

b
~2logb —logd/e — —

~ log(b?/d) +1 —b*/d

The exponent we arrive at is compared to zero to see if b is large enough
to force the probability low. It is this type of manipulation that forces us
to consider the accuracy of the two representations (A.1) of the Stirling
formula. The first, which we preferred not to use in the example above,
has very high accuracy (even at d = 1) as the standard plot of relative
error in figure A.la shows. The logarithmic error of the simpler bound
is shown in figure A.1b. For d > 5, this error is less than 1/3, which in
the above example is negligible relative to the constant unity.

Let ¢(z) be the density of N(0,1) and 1 — ®(2) its cdf. The classical
asymptotic expansion for @ is

5 10 15 20 d
-0.1
1
-0.02 -0.2] 7 log(s1(d)/dl)
-0.3
) 1
0.04 o4 7 log(s2(d)/d!)
-0.06 -0.5
-0.6
(a) (b)

Figure A.1: Stirling’s asymptotic expansion

Relative error of two forms of Stirling’s approximation to the factorial,
s1(d) = V2rddde=? and s2(d) = (d/e)?.
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1 1.6
1.5
0.8 1/z2
1.4
0.6 #(2)/=
1.3 P(z)
0.4 12
0.2 (2) 1.1
1.5 2 2.5 3 35 4 Z 1.5 2 2.5 3 35 4 =

(a) (b)

Figure A.2: The normal tail estimate

In the left panel, r(z) = (#(2)/2z — (2))/ ®(2).

A.1 Lemma For z > 0,

o(2)/z — B(z)

3 =V &

Proof. Integrate by parts.

8) = [ aole)™

— o)z [ 2D

> ¢(2)/z = 8(2)/2* O

dzr

Thus ¢(z)/z > ®(z), with the relative error going to zero as the argu-
ment squared. See figure A.2a. Figure A.2b shows that, for z > 1, the
ratio between the two is less than about 1.5, and for z > 3, the ratio is
less than 1.1, which is more than adequate for our purposes.

Laplace’s method finds asymptotic expansions for integrals

/ g(w)e M) dy
w

as A — oco. The precise result is

A.2 Theorem Let f(w) be twice continuously differentiable with a
unique positive minimum at wy in the interior of W C R¢, and g(w) be
continuous at wo. Write K = VV f(w)|,,, for the Hessian of f. Then,
provided it converges absolutely for A large enough,

d _
/ g(w)e M) duy ~ /21 g(wo) |NK| 1/2 g=Af(wo)
w

in the sense that the ratio of the two sides goes to unity as A — oo.
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Proof. A proof is in [57, sec. IX.5], but the idea is simple. As A\ — oo,
the exponential peaks more sharply and only the behavior of f about
the minimum matters, so expand f about wy and substitute into the
exponential:

/ g(w)e_kf(wo)e—(w—wo)-r[)\K](w—wo)/Q d’LU
w
Eg(’wo)e_)‘f(w‘))/ e—(w—wo)T[AK](w—wo)/z dw
w

where In the second line we have used that g is changing slowly relative
to the exponential. The integral is expanded to all of R%—it is negligible
away from wp—and is easily performed. O

Letting A = b?/2 and f(w) = 1/0?(w) above yields the more convenient

A.3 Corollary Let 0?(w) be twice continuously differentiable with a
unique maximum at wo in the interior of W C R?, and g(w) be con-

tinuous at wg. Then, provided it converges absolutely for large enough
b,

-1/2
—H/2 /efb2/2og

2
99

[ st dw = Var'g(un) ()

where H = VVa?(w)

|wo'
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Bounds by the
Second-Moment Method

Here we show another connection between the exceedance probability
estimate based on bundle size and rigorous bounds on that probability.
We begin with the simple

B.1 Proposition Any random variable D > 0 satisfies

(ED)*

E(D?)

Proof. Apply the Cauchy-Schwarz inequality to D1g o) (D). O

P(D >0)>

As pointed out in [6, sec. A15], the relevance of this inequality to the
PCH is as follows.

B.2 Corollary If vol(W) < co and Z(w) is continuous then
®(b) vol(W)?

p(|zw H >b

( o(w) ) Jiy ElDy | Z(w)/o(w) > b] dw
Proof. Take 0 as Lebesgue measure and D as Dy in proposition B.1. The
variance o%(w) must be continuous, so Z(w)/o(w) is again continuous,
and the preimage Z~!((h,00)) C W is open, so the preimage is either
empty or of positive Lebesgue measure. This means that
Z(w)
)

(B(b) vol(W))’
ffP (Z(w/) > b, f((z,})) > b) dw’ dw (B.1)
®(b) vol(W)?

ffp(zW) b| 289 > b) dw’ dw

P(Dy > 0) = P(

For the normalized process Z/o, the expression for E[Dy|Z(w) > b]
in (5.5) becomes the denominator, yielding the corollary. O

The lower bound developed in §5.1 for exceedance probability in the
PCH context is

u

w 2(b)
Z()H >b /EDb|Z( )/ (w) > 0]
®(b) vol(W)?
= T EDy | Z(w)/o(w)>b] duw

dw

(B.2)
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where the second line follows via the harmonic mean inequality Ef >
(Ef~1)=! (for f > 0). The second-moment method thus yields a lower
bound on exceedance probability that is also obtainable as a further
lower bound to the harmonic mean method result of corollary 5.6.

The same correspondence does not appear to obtain for the unnor-
malized process because the trick of converting the joint probability into
a conditional one, used in (B.1), does not work.



C

Calculations

§C.1 Vapnik Estimate of Sample Here we derive the sample size estimate (2.2) in §2.1. We seek the

Size

sample size sufficient for
P([[ lvr(w) = E)lllyy, >€) <7 (C.1)

say. This will occur if the Vapnik upper bound (2.6) falls below the
threshold 7:

2
10g6+vlog;e +vlogn—62gglogr . (C.2)

Deal with the logn term by approximating it linearly at a point o > 0
to be determined:

logn/a<n/a—1 = logn<loga+n/a—1 |, (C.3)

which is an equality at @ = n. Using this bound, a sufficient condition
for (C.2) is that

2 2 6
n<6——3> Zvlog—a—l-log—
4 « v T

Rewriting o = 4v3/e? and rearranging yields

4ov 85 -1 6
n > Ty [log = +v7 " log T}
which is valid for any 8 > 1. Finding the minimizing 3 is difficult, but
making a near-optimal choice is easy since in this regime the bracketed
term is insensitive to 8 while the initial factor calls for 5 > 1. Choosing
B = 8 (close to optimal for e = 0.1) yields

S 4.6v

> [log 6—3 +v log 9] (C.4)
€ T

which is sufficient for (C.1). No choice of 8 could give an initial factor

better than 4v /€2, so little has been lost beyond the imprecision already

in (C.2).

Once this exponential bound drops below unity, it decreases precipi-
tously toward zero. (E.g. even demanding 7 = €”, infinitesimal for large
v, does not affect the sample size materially because the second term
in the bracketed factor is negligible.) It is thus convenient to find the
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“critical” sample size at which the exponential bound falls below unity.
Dropping the negligible term shows this to be very nearly

9.2v 8
We use this idea of a critical sample size, at which the exponential
bound first becomes informative and almost simultaneously drives the

probability of interest infinitesimally low, repeatedly in this work.

The differential volume element used in (4.10) is

(log1/2)*"*

vol({w € [0,1]* : 2z < H‘liwZ <z+4dz})=dz =1 ,
(C.6)
which is the (negative) rate of change of the volume
Ii(2) == {w € [0,1])" : [[{w; > 2} (C.7)

of a hyperbolic region. Develop a recurrence for I;(z) by noting that it
is built out of a continuum of lower-dimensional hyperbolic slices:

Il(z)z/1 dw=1-2 (C.8a)

Ii(z) = / Ii—1(z/w)dw (d>1). (C.8b)

z

Computing the first few functions shows a simple pattern.

C.1 Lemma
(log1/2)4"
d—1)! ()

Proof. The hypothesis (x) is easily checked for d = 2. Proceeding by
induction, we compute

Id(z) = Id_l(z) —Z

Id+1(z):/ Li(z/w) dw

1 ogw/z)?!
= [ tasteto) = ) P

1 1/z (log r)d—1
7Id(z)_z(d—1)!/1 " dr

(log1/2)"
d

(C.9)

=T4(2) — 2 O

The lemma is then iterated to obtain
d—1

Iy(z) =1-2)_ W
k=0
(2) 7(d;log1/z) (C.10)
T(d)
() (log1/2)1

i M(1,d;log1/z)



§C.3 Rectangle Constant

CALCULATIONS (6]

Relation (a) follows from [1, eq. 6.5.13], where y(m, z) is the incomplete
gamma function, and (b) follows from [1, eq. 6.5.12], with M the Kum-
mer function. Differentiating the first expression yields a telescoping
series which simplifies to (C.6).

We solve the recurrence (4.15):

Ii(z) := /1/2z dy (C.11a)
Iy(z) = / . 1;yfd_1<zy> By (d>1) (C.11b)

Note that I4(-) is only evaluated on [1/2,1].

C.2 Lemma

1 (log2z)*-!

laz) = 5. a1

M(d, 2d;log 2z)

where M is the Kummer function [1, ch. 13].

Proof. For d = 1, note M (1,2;log2z) = (2z — 1)/log(2z) and the for-
mula in question gives I1(z) = 1 — 1/2z as desired. For the inductive
step, if the hypothesized formula holds everywhere on [1/2,1] for d then

1 2d—1 ® k k
1-— 1 (log2z d log 2z
Id+1(z):/ y (log 2zy) (log 2zy) dy
1

22 ¥y 2zy  (2d—1)! — (2d)* k!

1

_ 1 ) 2d+k—1d
22 = 2d+ k- 1) )y o2 (log 22y) Y

Express the integrand as terms like (log1/y)™/y via the power series

and the binomial theorem, leaving us to integrate

2d+k—1

Id+1(z):222ﬁ Zﬁ nz:;) ( " )
/22 Yy

(log 22)2d+k7n71(_1)n /1

1 oo (d+ll:71)
- ZZ(2d+k—1)'

k=0 " m=

“i’“:*l 2d+k—1\ (=1
n m+n+1

n=0

=

Because 2z > 1, the only change in order of summation involving some
negative quantities occurs with the finite sum on n in (*x). Since
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Zi\]:o (]Z) ()" /(xz+7r) = (’”+N) /:1; (see (5.4.1) of Knuth’s helpful
book [27]) the final sum simplifies, and after rearrangement we have

Ig11(2) = zizki:o <d+:_1)§;m
_ 2_1Z (log 22)20+1 ki) mio <d+ : - 1) (zd(lfi 2+z);+j .
- log2z )2d-+1 kzoz% <d+ i 1> (29(:5121) r)!
_ 1og2z WZ zdkffir > <d+k— 1)

= log 27)24+1 Z

1 (log 22)2d+1
T2z (2d + 1)!

(log 22)" d—l—r
(2d+1+71)! r

M(d+1,2(d+1);log2z) . O

We note in passing that the leading constant in learning orthants led to
a similar recurrence whose solution also involved a Kummer function.

Originally we were interested only in I; = I4(1). There is an equiva-
lent formula for this which involves smaller powers of log 2:

d
2d — k
d k
201 = kg ~ ( J >(—10g2)

The equivalence can be checked by a lengthy manipulation of the gen-
erating functions.
Finally, there is the simple bound

(C.12)

C.3 Lemma
V2 < M(d, 2d;1log2) < 2

Proof. Since 2% < d¥/(2d)*F <
o0 [e ) Z
/2 = 72 P < M(d,2d; = O

In §4.4, we find

PZ@)ly > 0) = & o K2

W T4 wd20(d/2) " ’

the latter expression is defined as Q). As shown in §A.1, the crude form
of Stirling’s formula is adequate for our purposes here:
128e¢ b2 b2

+log — — 2—
¢ a2

(C.13)

logQ ~ long 1+ 2 log

; (C.14)



§C.5 Smooth Network Sample
Size
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The isotropic constant K, ; is bounded in result 4.12 as d—%2 < Kg1 <
1. The lower approximation to exceedance probability becomes

1 1 128e¢ b2 b?
| > 1 log — —2— 1
dogQ_2og - +ogd 7 (C.15)

which falls below zero at b?/d = 1.3.
For the upper bound, with v = b%/d, (C.14) becomes

1 10.
g log Q < log10.5 + log vvVd — 2y < log 105 _ (2 — aV/d)
ae
where we have used
logyVd < —loga + ayvVd — 1

as in (C.3). This means

~ log(10.5/ae)
9 a\/a

is enough to force @ < 1. Choosing the nearly optimal a = 1/(2v/d)
shows

y=b%/d=1.4+ (1/3)1logd (C.16)

is sufficient.

In corollary result 4.18 of §4.5, we seek the value of b for which
K42m)Y 24 ®(b) < 1 (C.17)
Taking logs, dividing by d, and letting v = b?/d gives
log(27rK?) +logd +logy —v <0

Using the standard upper bound to the logarithm (C.3) yields the suf-
ficient condition

(1 —a) >log2rK? +logd — 1

or

For the tightest bound, select « so that ay ~ 1; somewhat arbitrarily
we use a = 1/6 resulting in a critical value of

v =32+ 1.2log(K?%d) . (C.18)
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In §5.3 we introduced an upper bound and approximation for the mean
clump size; here we compute this approximation for three covariance
models. The two ‘rough’ covariances (cusped and isotropic) are treated
simultaneously by defining the vector p-norm

d 1/p
wl, = (Z|wj|p) (C.19)

for 1 < p < oo. The two covariances can be written locally about w as
R(w,w +v) = o? — Tol, . (C.20)

The cusped case is p = 1 and I diagonal; the isotropic case is p = 2 and
I' a multiple of the identity.

If the variance is constant, or if w is a local maximum of a smooth
variance function, then variations of R(w,w + v) dominate those of
o(w +v). As far as p and ¢ are concerned, the variance is constant so

p(w,w+v) ~1— |2 Fv‘
1/2 1/2
Cww+v) =~ (352) 7~ (3] To])

The estimate of clump size is

E[Dy | Z(w)>b] ~ /@((b/a)g(w,w +0)) dv
~ [#(%
:2d|F/02‘7 (5)2(1/ (|u|1/2) du

a

= 2, [0/0? 7 () d/o 218 (/2) da
(C.21)

Fv‘ )dv

202 o2

In the final line we let 2z = |u,, and the volume element is the derivative
of the volume of a generalized ball in R%:

291 (1/p)?

4= vol R . < =
Kp,d % vol({u € |u|p <z}) p1dT(d/p) z

vol{u € R? : |u

lul, € (2,2 +d2)}) =

d d—1
—Kpd?Z —d/ﬂpdz dz
dz P ’

After a substitution, the remaining integral is done by parts.

d/ 2471 ®(y/2 dz—2d/ r24=1 (r) dr
:r2d<f>(r)‘oo+/ r2dg(r) dr
0

1
D) 2ddl 2\72(1 (d+(1/2)) ;

the last line is half the 2d-th moment of N (0, 1).
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The mean bundle size becomes

1 (2d)! 291(1/ a-1 (024
2 d dldFZ/ [r/o7] () (€22

E[Dy | Z(w)>b] ~

The cusped covariance is the case p = 1 and the mean bundle size
reduces to (5.14). With p = 2, using the alternate expression for the
normal integral,

E[Dy | Z(w )>b]~d7(4\/%)d F(d;(Ld%Z)) (:) (%)"
(C.23)

which has the same dependence on b and v as ECy(w). The ratio of
this to ECp(w) depends on the isotropic constant Ky 1 (see result 4.12)
for which only bounds are known. Retaining only the factorials and
exponential factors and using Stirling’s formula, the ratio is

E[Dy|Z(w)>b] I'(d+(1/2))
;Cb(’u)) ~ (4ﬁ)d F(d/2) Kd,l
I'(d+(1/2)) (C.24)
< (4v/m)? TR

~ (8vm)(d/2)!

I'(d/2) (C.25)

In the case of the smooth process, nonstationarity can play a role
because changes in the variance are not dominated by other terms, thus
affecting p and ¢. The local expansion (4.28) we have used is

1 A —A
pesnmena-yir ol 2]

and in these terms, after some simple algebra,

p(w,w+v)=1—L1vT2py (C.26a)

TA 1/2
C(w,w+v) =3 (v A v)1/2 (U 02U> . (C.26b)

While integration of ®((b/c)¢) is difficult, it is easy to obtain an upper
bound that is tight enough to illustrate our point. As remarked pre-
viously, at a local maximum of variance, —VVo?(w) = 2(Ag2 — A11)
so the latter must be non-negative definite, implying that the Rayleigh
quotient involved in ¢ is at least unity. (In the constant-variance case
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the Hessian is zero so the quotient equals unity.) Then

EIDy | Z(w)> ) = [ ®((b/a) (w0 + ) do

< /@(% vT 1/2> dv
12 (C.27)
:/é(% T/}T"fv )dv
L 1-1/2 [2g 1/2
— |22 )" [ 8 (W) ) au
and the remaining integral is done just as above:
/@((u u)l/ )du—dnd/ O(ryri=tdr
0
= Kd o(r)yrd dr
0
1
= &dﬁ2d/2r(§(d+1)) (C.28)
~ (27r)d/2

In the last line we have used Stirling’s formula and discarded v/d and
small constant factors. For our purposes,

E[Dy| Z(w)>b] < 22 2m)%2 | Ago/o?| "/ (%)d
= 2d ECb(w)

(C.29)

by comparison with result 4.14.

In §5.5 we wish to compute the correlation volume for three covariance
models. As in §C.6, both ‘rough’ covariances can be treated by the
model (C.20); for such covariances

Vi (w) =vol({v e R : ( <7})
= vol({v e R* : ‘0—12 I‘v‘p <27%})
=2 |F/O’2‘_1 7 vol({u € R? : |v|, < 1}) (6.30)
=29k, 4 |I’/02}_1 72
The bound to the mean bundle size is simply

E[Dy| Z(w)>b] > 2% kpa |T/0| " 722 8((b/0) 7)

Application of the asymptotic expansion for ® and differentiation
shows the best threshold is

2 (b)o)* =2d—1~2d ;
this yields

E[Dy| Z(w)>b] > (4d)? ®(V2d) kp.a IT/o? ‘ (o/b)%*
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This estimate is exactly (C.22) with a different constant. The ratio
between the exact integral and its lower bound is just

(d)/(2d) _ o

(4d)d ®v/2d ’ (C:31)

as usual via Stirling’s formula and the expansion for ®, for any process
parameters and level b.
As for the smooth process, its ¢ function is above as (C.26) so

-
_ d . (,,T Ao v Agpv 2
Vr(w) ={veR": (v L8 v) L}TAM] <47’}

[oa

The region is not an ellipse;' however, it can be bounded from within
and without by ellipses. As discussed in §C.6, at a variance maximum
the bracketed factor is at least one, so replacing it by unity yields a
larger (elliptical) set. Since we wish to compare to E[Dy | Z(w)>b], let
us assume that the variance is constant, so Ags = A1; and the bracketed
term is exactly unity. This way both the integral for E[Dy | Z(w) > b]
and the correlation volume are exact results. The volume of the ellipse
is trivially

Vi(w) = 2% kg |Ago/0?| 27 (C.32)

The bundle size is at least as large as the correlation volume multiplied
by ®((b/c) 7). Using the asymptotic expansion as before to find the
tightest estimate yields

(/o) =d—-1~d ;
the resulting estimate of E[Dy | Z(w)>b] is
_ _ d
E[Dy | Z(w) >b] < 244% 2, $(v/d) |Ags/o?| (%) (C.33)

~ 20 (2m)4/2 | Agg 0?2 (%)d (C.34)

where in the last line we have used Stirling’s formula and dropped small
factors. To compare to E[Dy|Z(w) > b], take the ratio of the exact
expression for E[Dy | Z(w)>b] ((C.27), (C.28)) and (C.33):

2421 (4(d+1)) /27
da/2 @(\/c_l)

After some algebra, we see that the ratio is asymptotically v7d.

We can find the correlation volume analytically for the situation of learn-
ing orthants in R? with a normalized error criterion. Following §4.2, the
covariance of the original process is

EZ(w)Z(w') = |w Aw'| — |w||w|

1. Some rewriting shows it is actually the ‘polar inverse’ of an elliptical region.
That is, if T Mz > 1, then (z/|z|,)/ |z|, is in the polar inverse.
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where we again use the notation |w| = H?Zl w;. To find the correlation
volume, ¢(w,w + §) is needed; this is in general not the same as the ¢
found previously for w a variance maximum.

Let § € R? be small and partition indices into J* = {j <d : §; > 0}
and J~; write § = {1---d}. Let R, 02, and 0’2 be the covariance and
variances of the unnormalized Z process.

w') = 1;[% : g_[(wj +0;) — |wl l;[(wj +95)
~ Jwl + [w] ;(@/wj) = [w]? — |w]? Eﬂ:(@-/wj)
=0’ +[u| Z(5j/wj) ~ Jw]? Z(5j/wj)
Similarly, 8 d

EZ(Ww)? =|w+ 4| — |w+6|?
~ [[(ws + 8;) = [J(w? + 26,w;)
aJ

J

|w| + |w]| Z(5j/wj) — [wl® = 2lwl* Y (8;/w;)
d

¢

o? + |w)( 1—2|w| ) (6;/w;)
J

To put these together easily, note
p(w,w") = R(w,w")/(c0")

_ [R(’U),’U)/)/O'Q]/[O'IQ/O'ﬂ 1/2
= (1—A1)/(1—-A9)"?
~1 —Al +A2/2

for appropriate terms A1, A, which are of order §. Using the expressions
for the covariance and variance just derived, we find

p(w, w") ~1+M25/ —EMZ6/

=1- m%}‘sﬂ/%‘

The correlation volume is defined by the point where ((1 — p)/(1 +

(C.35)

p))l/2 < T, or approximately 1 — p < 272, or

d
> 16il/wj > 4(1 — [w|)r®
j=1

This is a ‘diamond-shaped’ polyhedron in R? with extreme points at
§; = £4(1 — |w|)w;7? along each axis. Its volume is

V, (w) ~ 8%w|(1 — |w|)?r2/d! (C.36)

where we have used the fact that the volume of the polyhedron with
extreme points at 41 along each axis is 2¢/d!.
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In §6.3, we found the an empirical estimate of the exceedance probability

u

we need an estimate of sample size. Dropping the leading constant and
taking logs yields the criterion

Z(W)H > b) ~ ete13dgd <b2>d(i)(b) ; (C.37)
. : .

o(w) d

logy — (1/2)y—1.3+1logd <0

after letting v = b?/d. Using the approximation (C.3) to log~y yields for
any a > 0

7((1/2) — (1/a)) > loga — 2.3 + logd

On solving for v we find, no matter what « is used, v > 2log(Kd) for
some constant K. Come close by letting o = 10 so that

y=1b%/d>25log(10e %3d) = 2.5logd . (C.38)
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